Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 226-236    DOI: 10.3785/j.issn.1006-754X.2023.00.010
建模、仿真、分析与决策     
计算模型对空气静压轴承特性分析有效性的影响
辛晓承1(),龙威1(),高浩1,王萍1,雷基林2
1.昆明理工大学 机电工程学院,云南 昆明 650500
2.昆明理工大学 云南省内燃机重点实验室,云南 昆明 650500
Effect of calculation model on effectiveness of characteristics analysis of aerostatic bearings
Xiaocheng XIN1(),Wei LONG1(),Hao GAO1,Ping WANG1,Jilin LEI2
1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2.Yunnan Province Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(4364 KB)   HTML
摘要:

空气静压轴承具有精度高、摩擦小和寿命长的特点,被广泛应用于航空航天等领域。不同空气静压轴承气膜的承载面积和厚度的差距悬殊,导致气膜内部的流场极为复杂,传统的基于层流假设的N-S(Navier-Stokes)方程已无法精确预测该轴承的工作特性。为此,以圆盘形中心供气小孔节流空气静压轴承为研究对象,基于气体润滑和湍流理论建立其气膜流场数学模型,分析了气膜流场内湍流斑形成涡旋后的发展运动以及向平滑层流过渡的过程。在相同工况下,针对气膜厚度较小(<10 μm)时的特征流场采用k-?模型,针对气膜厚度中等(10~20 μm)时的特征流场采用大涡模拟(large eddy simulation, LES)模型,针对气膜厚度较大(20~30 μm)时的特征流场采用“k-?模型+层流模型”。然后,设计并搭建空气静压轴承静态特性测试实验台,以验证所采用计算模型的准确性。结果表明:根据不同工况选择适宜的计算模型,可提高空气静压轴承气膜流场的计算精度。当气膜厚度小于10 μm时,气腔内湍动程度较大,宜采用k-?模型进行描述;当气膜厚度增大到10~20 μm时,气腔内大涡旋以一定速度沿半径方向扩散并输运能量,宜采用LES模型进行描述;当气膜厚度增大至20~30 μm时,气膜的容性效应增强,使得气腔内后半部分呈现层流特征,宜采用混合计算模型进行描述。研究结果为不同工况下空气静压轴承的设计提供了参考数据,准确选择计算模型有利于缩短研发周期。

关键词: 空气静压轴承湍流理论k-?模型大涡模拟(LES)模型混合计算模型    
Abstract:

Aerostatic bearings have the characteristics of high precision, low friction and long life, which are widely used in aerospace and other fields. The bearing area and thickness of gas film of different aerostatic bearings are very different, resulting in extremely complex flow field inside the gas film. However, the traditional N-S (Navier-Stokes) equation based on the laminar flow hypothesis can not accurately predict the working characteristics of the bearing. Therefore, taking the disk-shaped center air supply orifice throttle aerostatic bearing as the research object, a mathematical model of its gas film flow field was established based on the gas lubrication and turbulence theory, and the development motion of turbulent spots in the gas film flow field after forming vortices and the transition process to smooth laminar flow were analyzed. Under the same operating conditions, the k-? model was adopted for the characteristic flow field when the gas film thicknss was smaller (<10 μm), the large eddy simulation (LES) model was adopted for the characteristic flow field when the gas film thickness was medium (10?20 μm), and the k-? model and the laminar flow model were adopted for the characteristic flow field when the gas film thicknss was larger (20?30 μm). Then, the static characteristics test platform of aerostatic bearing was designed and built to verify the accuracy of the calculation model. The results showed that selecting appropriate calculation model according to different operating conditions could improve the calculation accuracy of gas film flow field of aerostatic bearings. When the gas film thickness was less than 10 μm, the turbulence in the gas cavity was relatively large, and it was appropriate to describe it using the k-? model. When the gas film thickness increased to 10?20 μm, the large vortices in the gas cavity diffused and transported energy along the radius at a certain speed, which should be described by the LES model. When the gas film thickness increased to 20?30 μm, the capacitance effect of the gas film increased, which made the rear half of the gas cavity present laminar flow characteristics, and the hybrid calculation model should be used to describe it. The research results provide reference data for the design of aerostatic bearings under different operating conditions, and the accurate selection of calculation model is conducive to shortening the development cycle.

Key words: aerostatic bearing    turbulence theory    k-? model    large eddy simulation (LES) model    hybrid calculation model
收稿日期: 2022-06-08 出版日期: 2023-05-06
CLC:  TH 133.3  
基金资助: 国家自然科学基金资助项目(51766006);云南省万人计划资助项目(YNWR-QNBJ-2018-162)
通讯作者: 龙威     E-mail: xiao_cheng_xin@163.com;daifor@163.com
作者简介: 辛晓承(1998—),男,云南昭通人,硕士生,从事空气静压轴承研究,E-mail: xiao_cheng_xin@163.com,https://orcid.org/0000-0003-2270-3594
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
辛晓承
龙威
高浩
王萍
雷基林

引用本文:

辛晓承,龙威,高浩,王萍,雷基林. 计算模型对空气静压轴承特性分析有效性的影响[J]. 工程设计学报, 2023, 30(2): 226-236.

Xiaocheng XIN,Wei LONG,Hao GAO,Ping WANG,Jilin LEI. Effect of calculation model on effectiveness of characteristics analysis of aerostatic bearings[J]. Chinese Journal of Engineering Design, 2023, 30(2): 226-236.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.010        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/226

图1  空气静压轴承结构示意
参数数值
轴承直径D/mm100
气腔直径Dq/mm3
供气孔直径d/mm0.2
气膜厚度h/μm5~30
供气压力ps /MPa0.2~0.6
表1  空气静压轴承的结构尺寸和工作参数
图2  气膜流场特性数值计算的网格无关性验证结果
图3  空气静压轴承静态特性测试实验台
图4  不同气膜厚度下空气静压轴承的承载力
图5  气膜厚度为5 μm时的气膜流场特征
图6  气膜厚度为15 μm时的气膜流场特征
图7  气膜厚度为25 μm时的气膜流场特征
图8  不同气膜厚度下空气静压轴承的耗气量
图9  不同供气压力下空气静压轴承的静刚度
1 李海月,程泽,赵丹妮,等.基于悬吊法和气浮法的多自由度微重力模拟展开试验系统研究[J].工程设计学报,2020,27(4):508-515. doi:10.3785/j.issn.1006-754X.2020.00.055
LI H Y, CHENG Z, ZHAO D N, et al. Research on multi-degree-of-freedom microgravity simulation deployment test system based on suspension method and air flotation method[J]. Chinese Journal of Engineering Design, 2020, 27(4): 508-515.
doi: 10.3785/j.issn.1006-754X.2020.00.055
2 齐乃明,孙康,王耀兵,等.航天器微低重力模拟及试验技术[J].宇航学报,2020,41(6):770-779. doi:10.3873/j.issn.1000-1328.2020.06.014
QI N M, SUN K, WANG Y B, et al. Micro/low gravity simulation and experiment technology for spacecraft[J]. Journal of Astronautics, 2020, 41(6): 770-779.
doi: 10.3873/j.issn.1000-1328.2020.06.014
3 黄红,贺俊杰.工作介质属性对水基推力静压轴承刚度的影响[J].机电工程,2021,38(12):1611-1616. doi:10.3969/j.issn.1001-4551.2021.12.015
HUANG H, HE J J. Influence of working medium properties on stiffness of water-based thrust hydrostatic bearing[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(12): 1611-1616.
doi: 10.3969/j.issn.1001-4551.2021.12.015
4 CHEN Y S, CHIU C C, CHENG Y D. Influences of operational conditions and geometric parameters on the stiffness of aerostatic journal bearings[J]. Precision Engineering, 2010, 34(4): 722-734.
5 裴浩,龙威,杨绍华,等.空气静压轴承微振动形成机理分析[J].振动与冲击,2018,37(5):71-78.
PEI H, LONG W, YANG S H, et al. Formation mechanism of micro-vibration in aerostatic bearings[J]. Journal of Vibration and Shock, 2018, 37(5): 71-78.
6 十合晋一.气体轴承的设计与制造[M].刘湘,徐桢基,译.哈尔滨:黑龙江科学技术出版社,1988:17-18.
JINICHI K. Design and manufacture of gas bearing[M]. Translated by LIU X, XU Z J. Harbin: Heilongjiang Science and Technology Press, 1988: 17-18.
7 刘暾,刘育华,陈世杰.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社,1990:93.
LIU T, LIU Y H, CHEN S J. Hydrostatic gas lubrication[M]. Harbin: Harbin Institute of Technology Press, 1990: 93.
8 侯予,熊联友,王瑾,等.多排环形供气孔静压止推气体轴承的研究[J].西安交通大学学报,2000,34(11):40-73. doi:10.3321/j.issn:0253-987X.2000.11.010
HOU Y, XIONG L Y, WANG J, et al. Study of externally pressurized air thrust bearings with multi-rows supply holes[J]. Journal of Xi’an Jiaotong University, 2000, 34(11): 40-73.
doi: 10.3321/j.issn:0253-987X.2000.11.010
9 杜建军,刘暾,姚英学.狭缝节流气体静压轴颈-止推轴承静态特性分析[J].摩擦学学报,2002,22(1):66-70. doi:10.3321/j.issn:1004-0595.2002.01.016
DU J J, LIU T, YAO Y X. Analysis of the static performance of externally pressurized gas journal-thrust bearing with slot restrictors[J]. Tribology, 2002, 22(1): 66-70.
doi: 10.3321/j.issn:1004-0595.2002.01.016
10 郭良斌,王祖温.静压气体轴承静刚度的动态测试新方法[J].机械工程学报,2007,43(4):21-26. doi:10.3321/j.issn:0577-6686.2007.04.004
GUO L B, WANG Z W. New method of dynamic test for static stiffness of externally pressurized gas bearing[J]. Journal of Mechanical Engineering, 2007, 43(4): 21-26.
doi: 10.3321/j.issn:0577-6686.2007.04.004
11 龙威,裴浩,杨绍华.微尺度下空气静压支撑在滑移区的承载特性实验研究[J].液压与气动,2017(2):22-26. doi:10.11832/j.issn.1000-4858.2017.02.005
LONG W, PEI H, YANG S H. Experimental study on bearing characteristics of air static pressure support at micro scale in slip region[J]. Chinese Hydraulics & Pneumatics, 2017(2): 22-26.
doi: 10.11832/j.issn.1000-4858.2017.02.005
12 CHEN M F, LIN Y T. Static behavior and dynamic stability analysis of grooved rectangular aerostatic thrust bearings by modified resistance network method[J]. Tribology International, 2002, 35: 329-338.
13 CHEN X D, HE X M. The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography[J]. Tribology International, 2006, 39: 1336-1341.
14 张小青,王晓力,刘韧.微气体螺旋槽推力轴承-转子系统非线性动力学分析[J].北京理工大学学报,2012,32(11):1111-1115. doi:10.3969/j.issn.1001-0645.2012.11.003
ZHANG X Q, WANG X L, LIU R. Analysis of nonlinear dynamic for micro gas lubricated spiral groove thrust bearing-rotor system[J]. Transactions of Beijing Institute of Technology, 2012, 32(11): 1111-1115.
doi: 10.3969/j.issn.1001-0645.2012.11.003
15 LI Y T, ZHAO J Y, ZHU H X, et al. Numerical analysis and experimental study on the microvibration of an aerostatic thrust bearing with a pocketed orifice-type restrictor[J]. Proceedings of the Institution of Mechanical Engineers, 2015, 229(5): 609-623.
16 DONG H, ZHAO X L, ZHANG J A. Static characteristic analysis and experimental research of aerostatic thrust bearing with annular elastic uniform pressure plate[J]. Advances in Mechanical Engineering, 2015, 7(3): 1-13.
17 陈东菊,周帅,杨智,等.稀薄效应对空气静压止推轴承性能影响[J].四川大学学报(工程科学版),2016,48(1):194-199.
CHEN D J, ZHOU S, YANG Z, et al. Influence of flow factor in gas rarefied effects to aerostatic thrust bearing performance[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1): 194-199.
18 ZHOU Y, CHEN X, CHEN H. A hybrid approach to the numerical solution of air flow field in aerostatic thrust bearings[J]. Tribology International, 2016, 102(1): 444-453.
19 GAO S H, NONG S L. Performance characteristics of rectangular aerostatic thrust bearing by conformal mapping[J]. Industrial Lubrication & Tribology, 2018: 70(8): 1457-1475.
20 ZHANG J B, ZOU D L, TA N, et al. Numerical research of pressure depression in aerostatic thrust bearing with inherent orifice[J]. Tribology International, 2018, 123: 385-396.
21 王伟,王超,郑越青,等.小孔节流气体静压推力轴承微振动机理研究[J].光学精密工程,2020,28(8):1761-1774.
WANG W, WANG C, ZHENG Y Q, et al. Study on nano-vibration mechanism of orifice throttle aerostatic thrust bearing[J]. Optics and Precision Engineering, 2020, 28(8): 1761-1774.
[1] 涂文兵,袁晓文,杨锦雯,杨本梦. 不同元件故障状态下滚动轴承的动态特性研究[J]. 工程设计学报, 2023, 30(1): 82-92.
[2] 张龙隆,肖正明,刘江,刘卫标. 对转圆柱滚子轴承动态特性分析[J]. 工程设计学报, 2023, 30(1): 93-101.
[3] 黄龙艺, 王华, 嵇栩. 考虑紧固螺栓的三排滚柱式转盘轴承载荷分布计算[J]. 工程设计学报, 2021, 28(3): 350-357.
[4] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.