Please wait a minute...
工程设计学报  2025, Vol. 32 Issue (1): 62-71    DOI: 10.3785/j.issn.1006-754X.2025.04.103
机器人与机构设计     
仿变形虫可重构履带机器人设计与避障性能分析
张明路(),刘宗厚,王经天(),高强,许志凡,曹刘猛
河北工业大学 机械工程学院,天津 300401
Design and obstacle-avoidance performance analysis of amoeba-like reconfigurable tracked robot
Minglu ZHANG(),Zonghou LIU,Jingtian WANG(),Qiang GAO,Zhifan XU,Liumeng CAO
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(4882 KB)   HTML
摘要:

针对现有移动机器人在复杂狭窄环境下通过性和灵活性不足的问题,受变形虫重组变形机理的启发,提出了一种模块化可重构履带机器人。模拟变形虫胞质颗粒的刚柔转换特性,融合俯仰关节与偏航关节,设计了基于闩锁结构的可锁定履带模块。将多个履带模块串联组成闭环单链以构成机器人的外部结构,在内部柔性机体的驱动下,履带链能够实现连续滚动。通过机体头部逐个调整前端履带模块的偏航关节角并锁定,同时机体尾部对后端履带模块依次解锁,机器人可在前进过程中主动改变自身几何形态。随后,基于关节角描述的相邻履带模块之间的位置关系,获得机器人的形态矩阵,并通过对关节角序列的迭代分析建立了机器人的运动学模型。最后,通过仿真分析了机器人的形态变化范围,以准确评估其运动灵活性,并通过制作机器人样机和开展一系列测试实验来验证其运动性能。实验结果表明,机器人的最小转弯半径为17.7 cm,可通过连续改变偏航方向来实现在狭小约束空间中的灵活避障;配合俯仰关节的被动适应,机器人可穿越各类崎岖地形,由此验证了机器人的灵活性和通过性。研究结果可为移动机器人的仿生结构设计提供新思路。

关键词: 仿变形虫机器人可重构履带运动学建模形态分析灵活避障    
Abstract:

Aiming at the problems of insufficient passing ability and flexibility of existing mobile robots in complex and narrow environment, a modular reconfigurable tracked robot is proposed inspired by the recombination deformation mechanism of amoebas. By simulating the rigid-flexible transition characteristics of amoeba cytoplasmic particles, a lockable track module based on the latching structure was designed by fusing the pitch and yaw joints. Multiple track modules were connected in series to form a closed-loop single chain to form the external structure of the robot. Under the drive of the internal flexible body, the track chain could realize continuous rolling. By successively adjusting the yaw joint angle of front track modules and locking them by the body head, while unlocking the rear track modules in turn by the body tail, the robot could actively change its geometric morphology during the forward process. Then, based on the position relationship between adjacent track modules described by the joint angles, the morphological matrix of the robot was obtained, and the kinematics model of the robot was established by the iterative analysis of the joint angle sequence. Finally, the morphological variation range of the robot was simulated and analyzed to accurately evaluate its motion flexibility, and its motion performance was verified by making a robot prototype and carrying out a series of test experiments. The results showed that the minimum turning radius of the robot was 17.7 cm, and the robot could flexibly avoid obstacles in narrow confined space by continuously changing the yaw direction. With the passive adaptation of pitch joints, the robot could traverse all kinds of rough terrain, thus verifying the flexibility and passing ability of the robot. The research results can provide new ideas for the bionic structure design of mobile robots.

Key words: amoeba-like robot    reconfigurable track    kinematics modeling    morphological analysis    flexible obstacle-avoidance
收稿日期: 2024-01-15 出版日期: 2025-03-04
CLC:  TH 131  
基金资助: 国家重点研发计划资助项目(2022YFB4701101);国家自然科学基金资助项目(U1913211);中央引导地方科技发展资金项目(226Z1801G);河北省自然科学基金资助项目(F2021202016);河北工业大学学科交叉方向研究生培养资助项目(HEBUT-Y-XKJC-2021108)
通讯作者: 王经天     E-mail: zhangml@hebut.edu.cn;wjtianer@126.com
作者简介: 张明路(1964—),男,教授,博士生导师,博士,从事特种机器人技术研究,E-mail: zhangml@hebut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张明路
刘宗厚
王经天
高强
许志凡
曹刘猛

引用本文:

张明路,刘宗厚,王经天,高强,许志凡,曹刘猛. 仿变形虫可重构履带机器人设计与避障性能分析[J]. 工程设计学报, 2025, 32(1): 62-71.

Minglu ZHANG,Zonghou LIU,Jingtian WANG,Qiang GAO,Zhifan XU,Liumeng CAO. Design and obstacle-avoidance performance analysis of amoeba-like reconfigurable tracked robot[J]. Chinese Journal of Engineering Design, 2025, 32(1): 62-71.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2025.04.103        https://www.zjujournals.com/gcsjxb/CN/Y2025/V32/I1/62

图1  变形虫结构示意
图2  仿变形虫可重构履带机器人的设计理念
图3  机器人整体结构
图4  模块化可锁定履带的结构与转向示意图
图5  偏航关节锁定原理
图6  履带锁定机构的结构
图7  履带解锁机构的结构
图8  柔性机体的结构
图9  机器人转向原理
图10  偏航关节的锁定角
图11  机器人重构运动原理
图12  机器人运动学模型
图13  底部履带机构简图
图14  相邻关节坐标系转换
图15  机器人形态变化范围
图16  机器人头部可达空间
图17  机器人转向实验结果
图18  机器人避障实验结果
图19  机器人地形自适应实验结果
1 MU Z G, LIU T L, XU W F, et al. A hybrid obstacle-avoidance method of spatial hyper-redundant manipulators for servicing in confined space[J]. Robotica, 2019, 37(6): 998-1019.
2 CAO Z C, ZHANG D, ZHOU M C. Modeling and control of hybrid 3-D gaits of snake-like robots[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4603-4612.
3 周云虎. 轻型蛇形机器人系统设计及分段运动规划策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHOU Y H. Lightweight snake robot system design and segmented motion planning strategy research[D]. Harbin: Harbin Institute of Technology, 2021.
4 杜雪林, 易文慧, 邹家华, 等. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.
DU X L, YI W H, ZOU J H, et al. Structure design and motion realization of multi-joint snakelike robot[J]. Chinese Journal of Engineering Design, 2023, 30(4): 438-448.
5 安晓松, 李智卿, 马书根, 等. 水下蛇形机器人关节旋转机构建模与运动分析[J]. 传感器与微系统, 2023, 42(4): 35-38, 42.
AN X S, LI Z Q, MA S G, et al. Modeling and kinematic analysis of joint rotating mechanism for underwater snake-like robots[J]. Transducer and Microsystem Technologies, 2023, 42(4): 35-38, 42.
6 魏巍, 庄哲明, 唐昭, 等. 基于3-RSR并联机构的蛇形机器人本体构型设计与运动性能研究[J]. 机械工程学报, 2021, 57(23): 21-33. doi:10.3901/jme.2021.23.021
WEI W, ZHUANG Z M, TANG Z, et al. Body configuration design and kinematic performance research of snake-like robot based on 3-RSR parallel mechanism[J]. Journal of Mechanical Engineering, 2021, 57(23): 21-33.
doi: 10.3901/jme.2021.23.021
7 张冬冬, 江一行, 范云杰, 等. 基于仿生水母的水下机器人结构设计与试验研究[J]. 机电工程, 2024, 41(4): 739-746. doi:10.3969/j.issn.1001-4551.2024.04.020
ZHANG D D, JIANG Y H, FAN Y J, et al. Structural design and experimental study of underwater robots based on biomimetic jellyfish[J]. Journal of Mechanical & Electrical Engineering, 2024, 41(4): 739-746.
doi: 10.3969/j.issn.1001-4551.2024.04.020
8 张栋, 杨培, 黄哲轩, 等. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
ZHANG D, YANG P, HUANG Z X, et al. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
9 丁杨, 张明路, 焦鑫, 等. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
DING Y, ZHANG M L, JIAO X, et al. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors[J]. Chinese Journal of Engineering Design, 2023, 30(2): 154-163.
10 张军豪, 陈英龙, 杨双喜, 等. 蛇形机器人: 仿生机理、结构驱动和建模控制[J]. 机械工程学报, 2022, 58(7): 75-92. doi:10.3901/jme.2022.07.075
ZHANG J H, CHEN Y L, YANG S X, et al. Snake robotics: bionic mechanism, structure, actuation, modeling and control[J]. Journal of Mechanical Engineering, 2022, 58(7): 75-92.
doi: 10.3901/jme.2022.07.075
11 胡俊峰, 林茂虎, 王文慧. 微型仿尺蠖软体机器人的设计与实验[J]. 传感器与微系统, 2021, 40(8): 106-109.
HU J F, LIN M H, WANG W H. Design and experiment of miniature inchworm-like soft robot[J]. Transducer and Microsystem Technologies, 2021, 40(8): 106-109.
12 张丹凤, 李斌, 王立岩. 基于连续体模型的蛇形机器人质心速度跟踪控制方法[J]. 机器人, 2017, 39(6): 829-837. doi:10.13973/j.cnki.robot.2017.0829
ZHANG D F, LI B, WANG L Y. Tracking control method of the centre-of-mass velocity for a snake-like robot based on the continuum model[J]. Robot, 2017, 39(6): 829-837.
doi: 10.13973/j.cnki.robot.2017.0829
13 郁树梅, 马书根, 李斌, 等. 蛇形机器人步态产生及步态分析[J]. 机器人, 2011, 33(3): 371-378. doi:10.3724/sp.j.1218.2011.00371
YU S M, MA S G, LI B, et al. Gait generation and analysis for snake-like robots[J]. Robot, 2011, 33(3): 371-378.
doi: 10.3724/sp.j.1218.2011.00371
14 ZHANG H X, WANG W, DENG Z C, et al. A novel reconfigurable robot for urban search and rescue[J]. International Journal of Advanced Robotic Systems, 2006, 3(4): 359-366.
15 NODEHI S E, BRUZZONE L, FANGHELLA P. Porcospino, spined single-track mobile robot for inspection of narrow spaces[J]. Robotica, 2023, 41(11): 3446-3462.
16 FUKUOKA Y, OTAKA K, TAKEUCHI R, et al. Mechanical designs for field undulatory locomotion by a wheeled snake-like robot with decoupled neural oscillators[J]. IEEE Transactions on Robotics, 2023, 39(2): 959-977.
17 WANG Y F, WANG M Y, ROUSE N A, et al. Tracking displacement of a worm-like robot with multiple sensor configurations[J]. IEEE Sensors Journal, 2023, 23(14): 16238-16251.
[1] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.