【特约专栏】“双碳”背景下新型能源装备设计、制造、运维关键技术及其应用 |
|
|
|
|
基于点特征匹配的电力多模态图像配准方法 |
钟宇峰1( ),林昊1,林楠1,汪铭峰1,郭世晓1,洪兆溪2,孔麒2( ),冯毅雄2 |
1.国网浙江省电力有限公司 杭州供电公司,浙江 杭州 310000 2.浙江大学 机械工程学院,浙江 杭州 310027 |
|
Power multi-modal image registration method based on point feature matching |
Yufeng ZHONG1( ),Hao LIN1,Nan LIN1,Mingfeng WANG1,Shixiao GUO1,Zhaoxi HONG2,Qi KONG2( ),Yixiong FENG2 |
1.Hangzhou Power Supply Company, State Grid Zhejiang Electric Power Co. , Ltd. , Hangzhou 310000, China 2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
钟宇峰,林昊,林楠,汪铭峰,郭世晓,洪兆溪,孔麒,冯毅雄. 基于点特征匹配的电力多模态图像配准方法[J]. 工程设计学报, 2024, 31(6): 707-715.
Yufeng ZHONG,Hao LIN,Nan LIN,Mingfeng WANG,Shixiao GUO,Zhaoxi HONG,Qi KONG,Yixiong FENG. Power multi-modal image registration method based on point feature matching[J]. Chinese Journal of Engineering Design, 2024, 31(6): 707-715.
链接本文:
https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2024.03.201
或
https://www.zjujournals.com/gcsjxb/CN/Y2024/V31/I6/707
|
1 |
郭佳琛, 刘延峰, 马捷, 等. 红外与可见光图像配准技术分析[J]. 信息技术与信息化, 2023(6): 52-55. GUO J C, LIU Y F, MA J, et al. Analysis of infrared and visible light image registration technology[J]. Information Technology and Informatization, 2023(6): 52-55.
|
2 |
王宁, 周铭, 杜庆磊. 一种红外可见光图像融合及其目标识别方法[J]. 空军预警学院学报, 2019, 33(5): 328-332. WANG N, ZHOU M, DU Q L. A method for infrared visible image fusion and target recognition[J]. Journal of Air Force Early Warning Academy, 2019, 33(5): 328-332.
|
3 |
李云红, 刘宇栋, 苏雪平, 等. 红外与可见光图像配准技术研究综述[J]. 红外技术, 2022, 44(7): 641-651. doi:10.11846/j.issn.1001-8891.2022.7.hwjs202207001 LI Y H, LIU Y D, SU X P, et al. Review of infrared and visible image registration[J]. Infrared Technology, 2022, 44(7): 641-651.
doi: 10.11846/j.issn.1001-8891.2022.7.hwjs202207001
|
4 |
周美琪, 高陈强, 木松, 等. 基于模态转换的红外与可见光图像配准方法[J]. 计算机工程与设计, 2020, 41(10): 2862-2866. ZHOU M Q, GAO C Q, MU S, et al. Infrared and visible image registration based on modal transformation[J]. Computer Engineering and Design, 2020, 41(10): 2862-2866.
|
5 |
YANG Z W, SHEN G R, WANG W, et al. Spatial-spectral cross correlation for reliable multispectral image registration[C]//2009 IEEE Applied Imagery Pattern Recognition Workshop. Washington, DC, Oct. 14-16, 2009.
|
6 |
WANG C C, ZANG Y S, ZHOU D M, et al. An interactive deep model combined with Retinex for low-light visible and infrared image fusion[J]. Neural Computing and Applications, 2023, 35(16): 11733-11751.
|
7 |
HU Z H, JING Y G, WU G Q. Decision-level fusion detection method of visible and infrared images under low light conditions[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 38.
|
8 |
李枫, 赵岩, 王世刚, 等. 结合SIFT算法的视频场景突变检测[J]. 中国光学, 2016, 9(1): 74-80. doi:10.3788/co.20160901.0074 LI F, ZHAO Y, WANG S G, et al. Video scene mutation change detection combined with SIFT algorithm[J]. Chinese Optics, 2016, 9(1): 74-80.
doi: 10.3788/co.20160901.0074
|
9 |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
|
10 |
王植, 贺赛先. 一种基于Canny理论的自适应边缘检测方法[J]. 中国图象图形学报, 2004, 9(8): 957-962. doi:10.11834/jig.200408183 WANG Z, HE S X. An adaptive edge-detection method based on Canny algorithm[J]. Journal of Image and Graphics, 2004, 9(8): 957-962.
doi: 10.11834/jig.200408183
|
11 |
易图明, 王先全, 袁威, 等. 基于导向滤波和小波变换的红外可见光图像融合改进算法研究[J]. 现代信息科技, 2023, 7(6): 41-45. YI T M, WANG X Q, YUAN W, et al. Research on improved infrared visible light image fusion algorithm based on guided filtering and wavelet transform[J]. Modern Information Technology, 2023, 7(6): 41-45.
|
12 |
李晖晖, 郑平, 杨宁, 等. 基于SIFT特征和角度相对距离的图像配准算法[J]. 西北工业大学学报, 2017, 35(2): 280-285. LI H H, ZHENG P, YANG N, et al. Relative angle distance for image registration based on SIFT feature[J]. Journal of Northwestern Polytechnical University, 2017, 35(2): 280-285.
|
13 |
SHREYAMSHA KUMAR B K. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204.
|
14 |
YIN W X, HE K J, XU D, et al. Adaptive low light visual enhancement and high-significant target detection for infrared and visible image fusion[J]. The Visual Computer, 2023, 39(12): 6723-6742.
|
15 |
ZHANG X C. Benchmarking and comparing multi-exposure image fusion algorithms[J]. Information Fusion, 2021, 74: 111-131.
|
16 |
JIANG Q, LIU Y D, YAN Y J, et al. A contour angle orientation for power equipment infrared and visible image registration[J]. IEEE Transactions on Power Delivery, 2021, 36(4): 2559-2569.
|
17 |
KANTARCI A, EKENEL H K. Thermal to visible face recognition using deep autoencoders[C]//International Conference of the Biometrics Special Interest Group. Darmstadt, Sep. 18-19, 2019.
|
18 |
杨勇, 刘家祥, 黄淑英, 等. 卷积自编码融合网络的红外可见光图像融合[J]. 小型微型计算机系统, 2019, 40(12): 2673-2680. YANG Y, LIU J X, HUANG S Y, et al. Convolutional auto-encoding fusion network for infrared and visible image fusion[J]. Journal of Chinese Computer Systems, 2019, 40(12): 2673-2680.
|
19 |
ZENG Q, ADU J H, LIU J X, et al. Real-time adaptive visible and infrared image registration based on morphological gradient and C_SIFT[J]. Journal of Real-Time Image Processing, 2020, 17: 1103-1115.
|
20 |
AMIN-NAJI M, AGHAGOLZADEH A. Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks[J]. Journal of AI and Data Mining, 2018, 6(2): 233-250.
|
21 |
罗银辉, 王星怡, 吴岳洲. 基于残差密集网络的红外与可见光图像配准[J]. 计算机时代, 2022(12): 66-69. LUO Y H, WANG X Y, WU Y Z. Infrared and visible image registration based on residual dense network[J]. Computer Era, 2022(12): 66-69.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|