Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (5): 530-535    DOI: 10.3785/j.issn.1006-754X.2017.05.007
建模、分析、优化和决策     
可控震源振动器有限元模态分析与试验验证
黄志强1, 李刚1, 陶知非2, 郝磊2
1. 西南石油大学 机电工程学院, 四川 成都 610500;
2. 中国石油集团 东方地球物理勘探有限责任公司, 河北 涿州 072750
Finite element modal analysis and experimental verification of vibroseis vibrator
HUANG Zhi-qiang1, LI Gang1, TAO Zhi-fei2, HAO Lei2
1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China;
2. Bureau of Geophysical Prospecting Inc., China National Petroleum Corporation, Zhuozhou 072750, China
 全文: PDF(4476 KB)   HTML
摘要:

振动器作为可控震源的核心部件,其性能对可控震源输出信号的质量起着至关重要的作用。为了准确掌握可控震源振动器的模态特性,找到非激励振动的原因,根据有限元模态分析相关理论,建立了振动器-大地有限元模型,利用ANSYS Workbench软件对模型进行预应力模态分析,获得施加预应力后的振动器变形情况和前6阶固有频率以及相应的振型。有限元分析表明:在实际工作频宽内,振动器的主要振动形式是平板以上结构沿长轴和短轴的摆动以及以活塞杆为中心的扭转。针对有限元分析结果,进行了现场试验,试验结果与仿真分析一致,证明了有限元分析的正确性。研究表明,振动器共振会导致非激励性的摆动和扭转,这是振动器输出信号畸变的一个原因。研究结论为振动器结构设计和现场作业提供了理论指导。

关键词: 振动器有限元模态分析试验验证振动特性    
Abstract:

As a core component of the vibroseis, vibrator has a crucial impact on the vibrator output signal quality. In order to accurately understand the modal characteristics of the vibroseis vibrator and figure out the cause of the non-excitation modal, finite element model of vibrator-ground was developed based on the theory of finite element modal analysis, and the pre-stress modal analysis was carried out by using ANSYS Workbench software. Deformation of vibrator under pre-stress condition, the first six natural frequencies and vibration modes of vibrator were obtained. Finite element analysis showed that the main vibration modes of the vibrator within the actual operating bandwidth were swinging along the long axis and short axis of the baseplate and twisting centered about the piston. Experimental verification was conducted according to the finite element analysis results. The experimental result was consistent with the simulation analysis, which verified the correctness of finite element analysis. Studies show that resonance of vibrator results in non-excitation of swinging and twisting, which is one of the causes of distortion of the vibrator output signal. Research provides theoretical guidance for structural design and field work of vibrator.

Key words: vibrator    finite element modal analysis    experimental verification    vibration characteristics
收稿日期: 2016-12-14 出版日期: 2017-10-28
CLC:  TH123  
基金资助:

国家高技术研究发展计划(863计划)资助项目(2012AA061201)

通讯作者: 李刚(1986-),男,四川眉山人,博士,从事石油天然气装备设计与开发研究,E-mail:ligang_mail@qq.com,http://orcid.org//0000-0001-9903-9121     E-mail: ligang_mail@qq.com
作者简介: 黄志强(1968-),男,四川眉山人,教授,博士生导师,博士,从事石油天然气装备设计和测试控制等研究,E-mail:huangzq@swpu.edu.cn,http://orcid.org//0000-0001-7809-3241
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄志强
李刚
陶知非
郝磊

引用本文:

黄志强, 李刚, 陶知非, 郝磊. 可控震源振动器有限元模态分析与试验验证[J]. 工程设计学报, 2017, 24(5): 530-535.

HUANG Zhi-qiang, LI Gang, TAO Zhi-fei, HAO Lei. Finite element modal analysis and experimental verification of vibroseis vibrator[J]. Chinese Journal of Engineering Design, 2017, 24(5): 530-535.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.05.007        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I5/530

[1] 佟训乾,林君,姜弢,等.陆地可控震源发展综述[J].地球物理学进展,2012,27(5):1912-1921. TONG Xun-qian, LIN Jun, JIANG Tao, et al. Summary of development of land vibrator[J]. Progress in Geophysics, 2012, 27(5):1912-1921.
[2] 刘金中,马铁荣.可控震源的发展状况[J].石油科技论坛,2008,27(5):38-42. LIU Jin-zhong, MA Tie-rong. Development of the vibroseis[J]. Oil Forum, 2008, 27(5):38-42.
[3] 陶知非,赵永林,马磊.低频地震勘探与低频可控震源[J].物探装备,2011,21(2):71-76. TAO Zhi-fei, ZHAO Yong-lin, MA Lei. Low frequency seismic and low frequency vibroseis[J]. Equipment for Geophysical Prospecting, 2011, 21(2):71-76.
[4] 刘洪斌,陈如恒.地震勘探震源的历史与发展[J].石油机械,1997,25(8):43-45. LIU Hong-bin, CHEN Ru-heng. Development of seismic source for geophysical exploration[J]. China Petroleum Machinery, 1997, 25(8):43-45.
[5] 徐爱军,康丽生.可控震源平板-大地振动模型及参数研究[J].中国煤田地质,2001,13(3):62-64. XU Ai-jun, KANG Li-sheng. Controllable seismic source plane-telluric vibration model and parameters[J]. Coal Geology of China, 2001, 13(3):62-64.
[6] WEI Zhou-hong. How good is the weighted-sum estimate of the vibrator ground force?[J]. The Leading Edge, 2009, 28(8):960-965.
[7] 马磊,赵永林,王洪涛.矩阵束方法在可控震源振动平板模态分析中的应用[J].物探装备,2011,21(5):285-288. MA Lei, ZHAO Yong-lin, WANG Hong-tao. Application of matrix pencil method for modal analysis on seismic vibrator[J]. Equipment for Geophysical Prospecting, 2011, 21(5):285-288.
[8] HENDRIX C M. Evaluation of high freuqency vibrator response[D]. Lawrence:University of Kansas, Department of Geology 2012:41-47.
[9] DEAN T, VEREER P L, LAYCOCK M, et al. The complexity of vibrator baseplate-ground interaction measured with a thin-film pressure pad and a downhole tool[C]//Eage Conference and Exhibition, Madrid, Jun.1-7, 2015.
[10] WEI Z, PHILLIPS T F. Integrated analysis of the vibrator-ground system at high frequencies[J]. First Break, 2013, 31(1):89-96.
[11] 郝磊.可控震源平板性能研究及改进[D].成都:西南石油大学机电工程学院,2014:31-35. HAO Lei. Research and improvement for vibroseis baseplate[D]. Chengdu:Southwest Petroleum University, School of Mechatronic Engineering, 2014:31-35.
[12] 刘振武,撒利明,董世泰,等.中国石油物探技术现状及发展方向[J].石油勘探与开发,2010,37(1):1-10. LIU Zhen-wu, SA Li-ming, DONG Shi-tai, et al. Current situation and trend of geophysical technology in CNPC[J]. Petroleum Exploration & Development, 2010, 37(1):1-10.
[13] 王铁军,郝会民,李国旗,等.物探装备技术进展与发展方向[J].中国工程科学,2010,12(5):78-83. WANG Tie-jun, HAO Hui-min, LI Guo-qi, et al. Technical advance and development of China geophysical equipment[J]. Engineering Sciences, 2010, 12(5):78-83.
[14] 聂勇军, 廖启征. 桁架结构有限元及试验模态分析[J]. 机械设计与研究, 2011, 27(2):61-64. NIU Yong-jun, LIAO Qi-zheng. Finite element and experimental modal analysis of the truss[J]. Machine Design and Research, 2011, 27(2):61-64.
[15] 傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2002:33-40. FU Zhi-fang, HUA Hong-xing. Modal analysis theory and application[M]. Shanghai:Shanghai Jiaotong University Press, 2002:33-40.
[16] 袁启龙,马娜,周新涛,等.风力发电机叶片振动特性有限元分析[J].机械科学与技术,2014,33(5):730-734. YUAN Qi-long, MA Na, ZHOU Xin-tao, et al. Finite element analysis for vibration characteristics of wind turbine blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(5):730-734.
[17] 李云松,任艳君,程德蓉.考虑预应力时风扇叶片模态特征分析[J].机械传动,2010,34(5):49-51. LI Yun-song, REN Yan-jun, CHENG De-rong. Modal analysis of fan blade of considering pre-stress[J]. Journal of Mechanical Transmission, 2010, 34(5):49-51.
[18] WEI Z, PHILLIP T F. Characterizing the vibrator captured ground mass system using finite element analyses[C]//SEG Technical Program Expanded Abstracts. Houston, Sep. 22-27, 2013.
[19] 浦广益.ANSYS Workbench 12基础教程与实例详解[M].北京:中国水利水电出版社,2010:117-119. PU Guang-yi. ANSYS Workbench 12 basic tutorials and example explanation[M]. Beijing:China Water-Power Press, 2010:117-119.
[1] 陈振, 李涛, 薛晓伟, 周阳, 敬爽, 陈言. 基于模糊综合评价法的可控震源振动器平板疲劳可靠性分析与优化[J]. 工程设计学报, 2021, 28(4): 415-425.
[2] 李刚, 徐光明, 黄志强, 亓文, 郝磊. 扫描信号激振下振动器-大地耦合动刚度和动阻尼研究[J]. 工程设计学报, 2021, 28(4): 450-457.
[3] 曾光, 边强, 赵春江, 殷玉枫, 冯毅杰. 变参数下角接触球轴承保持架的稳定性与振动特性分析[J]. 工程设计学报, 2020, 27(6): 735-743.
[4] 白杨溪, 陈洪月, 陈洪岩, 王鑫. 多约束条件下采煤机摇臂横向振动分析及试验验证[J]. 工程设计学报, 2020, 27(6): 707-712.
[5] 陈振, 周阳, 敬爽, 黄志强, 陈言. 震源振动器平板损伤机理及其疲劳寿命预测研究[J]. 工程设计学报, 2019, 26(6): 658-665.
[6] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[7] 刘文, 张晋红, 林腾蛟, 杨云, 蔡云龙. 三支点桥式起重机结构噪声预估及其影响因素研究[J]. 工程设计学报, 2017, 24(5): 580-587,594.
[8] 黄志强, 曾洪阳, 李刚, 陶知非, 郝磊. 可控震源重锤活塞杆动态行为规律与扰动控制研究[J]. 工程设计学报, 2017, 24(4): 403-411.
[9] 陈浩, 吴定定, 饶国希, 赵旭昌. 电动负载模拟系统自适应控制系统设计[J]. 工程设计学报, 2017, 24(2): 217-224.
[10] 陈宝,陈茜,Christian Lohse,雷刚. 基于“双法多程式”的悬架橡胶衬套力学性能估算与试验验证[J]. 工程设计学报, 2014, 21(1): 43-50.
[11] 秦慧斌, 吕明, 王时英, 佘银柱. 齿轮超声加工纵向振动系统的设计与实验研究[J]. 工程设计学报, 2013, 20(2): 140-145.
[12] 张 鄂, 刘明利, 邵晓春, 单军勇, 王东生. 动态环境人-车系统的人体振动特性研究与仿真[J]. 工程设计学报, 2009, 16(3): 166-171.
[13] 张 鄂,许林安,刘中华,李晓玲. 自由度坐姿人体上体系统动力学建模与振动特性研究[J]. 工程设计学报, 2008, 15(4): 244-249.
[14] 吴宁祥, 吴克勤, 由美雁, 谢里阳. 裂纹梁的动态特性仿真[J]. 工程设计学报, 2006, 13(4): 236-240.