浙江大学学报(工学版), 2025, 59(4): 832-841 doi: 10.3785/j.issn.1008-973X.2025.04.019

计算机技术与控制工程

拒绝服务攻击下的有限时间控制

叶洁,, 石厅,, 闫文君

杭州电子科技大学 自动化学院,浙江 杭州 310018

Finite-time control under denial-of-service attack

YE Jie,, SHI Ting,, YAN Wenjun

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

通讯作者: 石厅,男,副教授. orcid.org/0000-0002-8025-1429. E-mail:tingshi@hdu.edu.cn

收稿日期: 2024-01-25  

基金资助: 浙江省自然科学基金资助项目(LY21F030007).

Received: 2024-01-25  

Fund supported: 浙江省自然科学基金资助项目(LY21F030007).

作者简介 About authors

叶洁(1999—),男,硕士生,从事网络控制系统安全研究.orcid.org/0009-0001-1295-3023.E-mail:221060032@hdu.edu.cn , E-mail:221060032@hdu.edu.cn

摘要

针对遭受外部干扰的离散网络控制系统,研究在拒绝服务(DoS)攻击下的有限时间控制问题. 考虑到DoS攻击可能同时存在于传感器-控制器(S-C)通道和控制器-执行器(C-A)通道,采用马尔可夫随机过程对DoS攻击的动态特性进行建模,将闭环控制系统表示为具有4个模态的马尔可夫跳变系统. 为了降低外部干扰对系统性能的影响,引入${\ell _2} - {\ell _\infty }$性能指标,增强闭环系统的抗干扰鲁棒性. 基于有限时间有界理论,构建适当的模态依赖李雅普诺夫函数,应用李雅普诺夫稳定性理论推导出控制算法的设计条件. 通过求解线性矩阵不等式(LMIs),给出有限时间状态反馈控制器的充分条件,确保系统在有限时间内保持稳定并满足给定的性能要求. 通过数值仿真和角度定位系统验证该控制算法的有效性及实用性. 仿真结果表明,在不同的DoS攻击模式下,该控制算法能够有效抑制系统的波动并保证系统在有限时间内的稳定性.

关键词: 网络控制系统 ; 有限时间控制 ; 拒绝服务攻击 ; 马尔可夫随机过程 ; 马尔可夫跳变系统

Abstract

For a class of discrete networked control systems subject to external disturbances, the finite-time control problem under denial-of-service (DoS) attacks was investigated. Considering that DoS attacks could occur simultaneously in both the sensor-to-controller (S-C) and controller-to-actuator (C-A) channels, a Markov stochastic process was employed to model the dynamic characteristics of DoS attacks. The closed-loop control system was represented as a Markov jump system with four modes. To mitigate the impact of external disturbances on system performance, a ${\ell _2} - {\ell _\infty }$ performance index was introduced to enhance the disturbance robustness of the closed-loop system. Based on the finite-time boundedness theory, appropriate mode-dependent Lyapunov functions were constructed, and the Lyapunov stability theory was applied to derive the design conditions for the control algorithm. A set of linear matrix inequalities (LMIs) was solved to provide sufficient conditions for the finite-time state feedback controller, ensuring that the system remained stable within a finite time while meeting the specified performance requirements. The effectiveness and practicality of the control algorithm were demonstrated through numerical simulations and an angular positioning system. Simulation results indicated that, under different DoS attack patterns, the control algorithm effectively suppressed system fluctuations and ensured finite-time stability.

Keywords: networked control systems ; finite-time control ; denial-of-service attack ; Markov stochastic process ; Markov jump system

PDF (1467KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

叶洁, 石厅, 闫文君. 拒绝服务攻击下的有限时间控制. 浙江大学学报(工学版)[J], 2025, 59(4): 832-841 doi:10.3785/j.issn.1008-973X.2025.04.019

YE Jie, SHI Ting, YAN Wenjun. Finite-time control under denial-of-service attack. Journal of Zhejiang University(Engineering Science)[J], 2025, 59(4): 832-841 doi:10.3785/j.issn.1008-973X.2025.04.019

相比于传统点对点传输的控制系统,网络控制系统(networked control systems,NCSs )具有灵活性高,功耗低,布线体积小等优点,被广泛应用于智能制造、车辆控制、多智能体系统、无人机集群控制等领域[1-3]. 无线网络的共享性和开放性带来的安全隐患包括数据包丢失[1,4]、时间延迟[5-6]和网络攻击[7-8],不仅对控制系统安全运行构成严重的威胁,也使NCSs的建模、分析和设计变得复杂. 在这些安全隐患中,网络攻击对NCSs的危害性最大[1,3]. 葡萄牙电信公司遭受的网络攻击致使数百万人使用的服务中断[7],乌克兰政府网站遭到网络攻击后大量重要数据泄露[9]. 因此,控制器设计时考虑网络攻击的影响,对NCSs的实际应用具有重要意义.

网络攻击通常分为3类: 欺骗攻击、拒绝服务( denial-of-service,DoS )攻击和重放攻击[8,10-13]. DoS攻击通过中断信号传输来阻止信号更新,对控制系统最具危险性. DoS攻击的发起对系统的先验性知识要求不高,有越来越多的学者关注与DoS攻击相关的研究[14-15],如在周期性DoS攻击下的控制器设计问题[16],分布式滤波问题[17-18]. 上述研究针对确定性的DoS攻击,但具有随机特性的DoS攻击更为常见[8,19]. DoS攻击的随机特性建模主要采用2种方法: 伯努利分布模型和马尔可夫分布模型. 在基于伯努利分布模型方面,Ye等[20]针对存在于控制器-执行器(C-A)通道的DoS攻击,研究基于网络的T-S模糊海上无人航行器系统的安全动态定位控制问题;Qi等[21]针对存在于传感器-控制器(S-C)通道的DoS攻击,研究半马尔可夫切换系统的离散时间滑模控制问题. 在基于马尔可夫分布模型方面,Shi等[22-23]针对存在于C-A通道的DoS攻击,研究动态事件触发机制的模型预测控制问题和无线网络控制系统的弹性控制问题;Zhao等[24]针对存在于S-C通道的DoS攻击,研究非线性系统的自适应事件触发跟踪控制与滤波问题.

双通道通信网络常见于NCSs. Geng等[25]研究轮式移动机器人在双通道同步攻击下的轨迹跟踪问题;Lian等[26]研究双通道切换系统在拒绝服务攻击下的时间触发控制问题. Geng等[25]视2个通道的DoS攻击为同步攻击,忽略了通道不同步攻击的情况. Lian等[26]将存在于2个通道的攻击独立建模,黄鹤等[27]指出2个通道通常共享1个通信网络,因此2个通道的DoS攻击相互关联. 本研究考虑双通道存在DoS攻击的情形,将双通道DoS攻击的动态特性进行统一建模,将闭环系统描述为包含4个模态的马尔可夫跳变系统. 现有研究大多集中在传统的李雅普诺夫稳定性概念之下. 该概念描述系统状态在无限时间间隔内的收敛特性[28-29]. 实际系统往往要在短时间内做出响应,如导弹控制系统、机器人运动控制系统、通信网络系统等[30],李雅普诺夫稳定性解决这类问题时存在局限性. Dorato[31]提出有限时间稳定的概念,探究系统状态在有限时间间隔内的收敛特性,为了使有限时间稳定性概念更具一般性,Amato等[32]进一步提出有限时间有界性的概念. 有限时间控制被广泛应用于随机系统[29]、马尔可夫跳变系统[33-34]和切换系统[35]等领域. 在应对网络攻击时,有限时间控制的问题研究成果相对有限,Ren等[36-37]只考虑DoS攻击存在单通道的有限时间问题,鲜见涉及双通道DoS攻击的有限时间控制问题的文献,研究S-C通道和C-A通道可能都存在DoS攻击的有限时间控制问题具有重要的理论意义和实际价值.

1. 问题描述

考虑线性离散系统,

$ \left. \begin{gathered} {\boldsymbol{x}}(k+1) = {\boldsymbol{Ax}}(k)+B\overline {\boldsymbol{{\boldsymbol{u}}}}(k)+{\boldsymbol{E}}{{\boldsymbol{w}}}(k), \\ {\boldsymbol{z}}(k) = {\boldsymbol{Cx}}(k). \\ \end{gathered} \right\} $

式中:${{\boldsymbol{x}}}(k)$为系统状态,$\overline {\boldsymbol{{\boldsymbol{u}}}}(k)$为控制输入,${\boldsymbol{z}}(k)$为控制输出,${{\boldsymbol{w}}}(k)$为外加干扰,$ {{\boldsymbol{A}}}、{{\boldsymbol{B}}}、{{\boldsymbol{C}}}和{{\boldsymbol{E}}} $均为具有合适维数的系统参数矩阵. 满足约束:

$ \sum\limits_{k = 0}^N {{{\boldsymbol{w}}^{\text{T}}}} (k){\boldsymbol{w}}(k) \leqslant \omega . $

其中$ \omega $为整数. 考虑S-C通道和C-A通道可能都存在DoS攻击的情况,闭环系统如图1所示.

图 1

图 1   网络控制系统结构

Fig.1   Structure of network control system


为了描述DoS攻击是否存在,引入随机变量$\alpha (k)$$\beta (k)$. $\alpha (k) $$\beta (k) = 1$分别表示C-A与S-C通道无DoS攻击的情况,$\alpha (k) $$\beta (k) = 0$分别表示C-A与S-C通道存在DoS攻击的情况. 在C-A 通道,令${{\boldsymbol{u}}}(k)$为控制器的输出. 由于受到DoS攻击的影响,被控对象的实际输入表达式为

$ \overline{{\boldsymbol{u}}}(k)=\left\{ \begin{array}{ll}{\boldsymbol{u}}(k), & \alpha (k)\text{=1}; \\ \overline{{\boldsymbol{u}}}(k-1), & \alpha (k)\text{=0}. \end{array} \right.$

等价改写为

$ {\overline {\boldsymbol{u}}}(k) = \alpha (k){{\boldsymbol{u}}}(k)+(1 - \alpha (k)){\overline {\boldsymbol{u}}}(k - 1). $

在S-C通道,令$\overline {\boldsymbol{x}}(k)$为控制器实际接收到的状态,受 DoS 攻击的影响,

$ \overline{{\boldsymbol{x}} }(k)=\left\{ \begin{array}{ll}\overline{{\boldsymbol{x}}}(k), & \beta (k)\text{=1}; \\ \overline{{\boldsymbol{x}}}(k-1), & \beta (k)\text{=0}. \end{array}\right. $

等价改写为

$ {\overline {\boldsymbol{{\boldsymbol{x}}}}}(k) = \beta (k){{\boldsymbol{x}}}(k)+(1 - \beta (k)){\overline {\boldsymbol{x}}}(k - 1). $

S-C 和 C-A 通道中的DoS攻击存在4种情况:1)S-C通道和C-A通道同时存在DoS攻击;2)S-C通道存在DoS攻击,C-A通道不存在DoS攻击;3)S-C通道不存在DoS攻击,C-A通道存在DoS攻击;4)S-C通道和C-A通道同时不存在攻击. 将DoS攻击的模式建模为离散时间的齐次马尔可夫链$ \{ \theta (k)\} , k \in {\bf{Z}} $,其状态空间为有限集合$S = \{ 1,\cdots,s\} , s = 4$.

$ \theta (k) = \left\{ {\begin{array}{*{20}{l}} {1,}&{\alpha (k){\text{ = 1}},\;\beta (k){\text{ = 1;}}} \\ {2,}&{\alpha (k){\text{ = 1}},\;\beta (k){\text{ = 0;}}} \\ {3,}&{\alpha (k){\text{ = 0}},\;\beta (k){\text{ = 1;}}} \\ {4,}&{\alpha (k){\text{ = 0}},\;\beta (k){\text{ = 0}}{\text{.}}} \end{array}} \right. $

${\{ \theta (k)\} }$的概率转移矩阵${\bf\textit{Ψ}} = [{\pi _{ij}}], i,j \in S $

$ P\{ \theta (k+1) = j|\theta (k) = i\} = {\pi _{ij}},\;{\pi _{ij}} \geqslant 0,\sum\limits_{j = 1}^4 {{\pi _{ij}} = 1}. $

其中$P\left\{ \cdot \right\}$为事件的概率.

注1 当$ \alpha (k) \equiv 1 $时,S-C和C-A双通道的攻击退化为只存在S-C通道的攻击,如文献[21]、[24];当$\beta (k) \equiv 1$时,S-C和C-A双通道的攻击退化为只存在C-A通道的攻击,如文献[22]、[23].

本研究考虑S-C与C-A通道可能都存在DoS 攻击的情况. 设计如下的状态反馈控制器:

$ {{\boldsymbol{u}}} = {{\boldsymbol{K}}\overline {\boldsymbol{x}}}(k). $

其中${\boldsymbol{K}}$为待确定的反馈增益矩阵. 定义增广向量

结合式(1)、(3b)、(4b)、(7),得到增广闭环系统:

$ \left. \begin{gathered} {{\boldsymbol{\xi}} }(k+1) = \overline {\boldsymbol{A}}(\theta (k)){\boldsymbol{\xi}} (k)+\overline {\boldsymbol{E}}{\boldsymbol{w}}(k), \\ {\boldsymbol{z}}(k) = \overline{\boldsymbol{ C}}{\boldsymbol{\xi}} (k). \\ \end{gathered} \right\} $

$ \theta(k)=i \in S \text { 时 } $$\overline {\boldsymbol{A}}(\theta (k))$为增广系统在第$i$种攻击模态下的系统矩阵,简记为$ {\overline{\boldsymbol{ A}}_i} $,有

$ \begin{split} &{{\overline {\boldsymbol{A}}}_1} = \left[ {\begin{array}{*{20}{l}} {{{\boldsymbol{A+BK}}}}&{\boldsymbol{0}}&{{\boldsymbol{0}}} \\ {{\boldsymbol{K}}}&{\boldsymbol{0}}&{{\boldsymbol{0}}} \\ {{\boldsymbol{I}}}&{\boldsymbol{0}}&{\boldsymbol{0}} \end{array}} \right],{{\overline {\boldsymbol{A}}}_2} = \left[ {\begin{array}{*{20}{l}} {{\boldsymbol{A}}}&{\boldsymbol{0}}&{{{\boldsymbol{BK}}}} \\ {\boldsymbol{0}}&{\boldsymbol{0}}&{{\boldsymbol{K}}} \\ {\boldsymbol{0}}&{\boldsymbol{0}}&{{\boldsymbol{I}}} \end{array}} \right], \\& {{\overline {\boldsymbol{A}}}_3} =\left[ {\begin{array}{*{20}{l}} {{\boldsymbol{A}}}&{{\boldsymbol{B}}}&{\boldsymbol{0}} \\ {\boldsymbol{ 0}}&{{\boldsymbol{I}}}&{\boldsymbol{0}} \\ {{\boldsymbol{I}}}&{\boldsymbol{0}}&{\boldsymbol{0}} \end{array}} \right],{{\overline {\boldsymbol{A}}}_4} = \left[ {\begin{array}{*{20}{l}} {{\boldsymbol{A}}}&{{\boldsymbol{B}}}&{\boldsymbol{0}} \\ {\boldsymbol{0}}&{{\boldsymbol{I}}}&{\boldsymbol{0}} \\ {\boldsymbol{0}}&{\boldsymbol{0}}&{{\boldsymbol{I}}} \end{array}} \right], \\ & {\overline {\boldsymbol{C}}} =\left[ {\begin{array}{*{20}{l}} {{\boldsymbol{C}}},{\boldsymbol{0}},{\boldsymbol{0}} \end{array}} \right],{\overline {\boldsymbol{E}}} = \left[ {\begin{array}{*{20}{l}} {{{{\boldsymbol{E}}}^{\mathrm{T}}}},{\boldsymbol{0}},{\boldsymbol{0}} \end{array}} \right]. \\ \end{split} $

式中:$ {\boldsymbol{I}}$为单位矩阵. 当$\theta (k) = 1,2$时,含有变量${\boldsymbol{K}},$${\overline {\boldsymbol{A}}_1}$${\overline {\boldsymbol{A}}_2}$分别改写为

$ {\overline {\boldsymbol{A}}_1} = {\tilde {\boldsymbol{A}}_1}+{\tilde {\boldsymbol{B}}_1}{{\boldsymbol{K}}}{{\overline {\boldsymbol{I}}}_1},\;{\overline {\boldsymbol{A}}_2} = {\tilde {\boldsymbol{A}}_2}+{\tilde {\boldsymbol{B}}_2}{{\boldsymbol{K}}}{{\overline {\boldsymbol{I}}}_2}. $

$\theta (k) = 3,4$时,$ {\overline {\boldsymbol{A}}_3} $$ {\overline {\boldsymbol{A}}_4} $均为常数矩阵.

定义1 给定矩阵${\boldsymbol{R}} > 0$、整数$N > 0$$0 < {\delta _1} < {\delta _2}$和初始条件${{\boldsymbol{\xi}} }(0)$,对任意$ k \in \{ 1,2,\cdots,N\} $,如果

$ E\{ {{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{\boldsymbol{R}}{\boldsymbol{\xi}} }(0)\} \leqslant {\delta _1} \Rightarrow E\{ {{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{\boldsymbol{R}}{\boldsymbol{\xi}} }(k)\} \leqslant {\delta _2}. $

成立,则称式(8)是关于$({\delta _1},{\delta _2},N,{{\boldsymbol{R}}})$随机有限时间稳定(stochastic finite-time stability,SFTS)的. 式中:$E\left\{ \cdot \right\}$为事件的期望.

定义2 给定矩阵${\boldsymbol{R}} > 0$、整数$N > 0$$0 < {\delta _1} < {\delta _2}$$\omega > 0$和初始条件${{\boldsymbol{\xi}} }(0)$,对任意$ k \in \{ 1,2\cdots,N\} $,如果

$ \begin{split} &E\{ {{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{\boldsymbol{R}}{\boldsymbol{\xi}} }(0)\} \leqslant {\delta _1}, \; \sum\limits_{k = 0}^N {{{{\boldsymbol{w}}}^{\rm{T}}}} (k){{\boldsymbol{w}}}(k) \leqslant \omega \Rightarrow \\ & \quad E\{ {{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{\boldsymbol{R}}{\boldsymbol{\xi}} }(k)\} \leqslant {\delta _2}.\end{split} $

成立,则称式(8)是关于$({\delta _1},{\delta _2},N,{{\boldsymbol{R}}},\omega )$随机有限时间有界(stochastic finite-time boundedness,SFTB)的.

本研究设计状态反馈控制器式(7),使得闭环系统式(8)同时满足要求:1) 闭环系统(8)关于$({\delta _1},{\delta _2},N,{{\boldsymbol{R}}},\omega )$SFTB;2) 在零初始条件下,控制输出${{\boldsymbol{z}}}(k)$满足

$ \mathop {\sup }\limits_{0 \leqslant k \leqslant N} \left\{E\{ {{{\boldsymbol{z}}}^{\mathrm{T}}}(k){{\boldsymbol{z}}}(k)\}\right\} \leqslant {\gamma ^2}\sum\limits_{k = 0}^N {{{{\boldsymbol{w}}}^{\mathrm{T}}}} (k){{\boldsymbol{w}}}(k). $

其中$\sup \;\{ \cdot \} $为上确界,$\gamma > 0$为给定常数,此时称闭环系统具有$ {\ell _2} - {\ell _\infty } $性能水平$\gamma $.

2. 主要结果

定理1 考虑线性离散系统式(1). 给定矩阵${{\boldsymbol{R}}} > 0$、整数$N > 0$以及常量$0 < {\delta _1} < {\delta _2}$$\alpha > 1$$\overline \gamma > 0$$ \omega > 0 $. 如果存在${\sigma _1} > 0$${\sigma _2} > 0$${{{\boldsymbol{P}}}_i} \in{\boldsymbol{ R}} > {\boldsymbol{0}}$$ i \in S $,满足条件:

$ \left[ {\begin{array}{*{20}{c}} { - {{{{\bf\textit{Ξ}}} }_1}}& * \\ {{{\bf\textit{ƞ}} } \otimes {{{\bf\textit{Ξ}} }_2}}&{ - {{{\bf\textit{Ξ}}}_3^{-1}}} \end{array}} \right] < {\boldsymbol{0}}, $

$ {\alpha ^N}{\delta _1}{\sigma _2}+{\alpha ^N}\varpi < {\delta _2}{\sigma _1}, $

$ {\sigma _1}{{\boldsymbol{R}}} < {{{\boldsymbol{P}}}_i} < {\sigma _2}{{\boldsymbol{R}}}, $

$ \left[ {\begin{array}{*{20}{l}} { - {{{\boldsymbol{P}}}_i}}& * \\ {{\overline {\boldsymbol{C}}}}&{ - {{\overline \gamma }^2}{{\boldsymbol{I}}}} \end{array}} \right] < {\boldsymbol{0}}. $

则系统式(8)是随机有限时间有界的,并满足${\ell _2} - {\ell _\infty }$性能水平$\gamma = \sqrt {{{\overline \gamma }^2}{\alpha ^N}} $. 式中:${\boldsymbol{P}} > 0$为正定矩阵,${\text{diag}}\;\{ \cdot \} $为对角矩阵,*表示矩阵对称位置的转置元素.

证明: 构造模态依赖的李雅普诺夫函数:

$ V(k) = {{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{{\boldsymbol{P}}}_i}{{\boldsymbol{\xi}} }(k), \;i \in S. $

定义辅助函数:

$ \varPi (k) = {{E}}\left\{ {V(k+1) - \alpha V(k) - {{{\boldsymbol{w}}}^{\mathrm{T}}}(k){{\boldsymbol{w}}}(k)} \right\}. $

定义$ {{\boldsymbol{\zeta}} }( \cdot ) = {\left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{{{\boldsymbol{\xi}} }^{\rm{T}}}( \cdot )},\;{{{{\boldsymbol{w}}}^{\mathrm{T}}}( \cdot )} \end{array}} \end{array}} \right]^{\rm{T}}} $,得到

$ \begin{split} &{{E}}\{ V(k+1)\} = \sum\limits_{j = 1}^S {{\pi _{ij}}} {[{{\overline {\boldsymbol{A}}}_i}\xi(k)+{\overline {\boldsymbol{E}}}{\boldsymbol{w}}(k)]^{\rm{T}}}\times\\&\quad{{{\boldsymbol{P}}}_j}[{{\overline {\boldsymbol{A}}}_i}\xi(k){\overline {\boldsymbol{E}}}{\boldsymbol{w}}(k)] = \sum\limits_{j = 1}^S {{\pi _{ij}}} {{\boldsymbol{\zeta}} }{(k)^{\rm{T}}}{\bf\textit{Ξ}}_2^{\rm{T}}{{{\boldsymbol{P}}}_j}{{\bf\textit{Ξ}}_2}{{\boldsymbol{\zeta}} }(k). \end{split}$

从而有

$ \varPi (k) = \sum\limits_{j = 1}^S {{\pi _{ij}}} {{\boldsymbol{\zeta}} }{(k)^{\mathrm{T}}}{\bf\textit{Ξ} }_2^{\mathrm{T}}{{{\boldsymbol{P}}}_j}{{\bf\textit{Ξ} }_2}{{\boldsymbol{\zeta}} }(k) - {{{\boldsymbol{\zeta}} }^{\mathrm{T}}}(k){{\bf\textit{Ξ} }_1}{{\boldsymbol{\zeta}} }(k). $

推导得到

$ \sum\limits_{j = 1}^S {{\pi _{ij}}{{{\boldsymbol{P}}}_j}} = {({{\bf\textit{ƞ}} } \otimes {{{\boldsymbol{I}}}_{{n_x}}})^{\mathrm{T}}}{{\bf\textit{Ξ} }_3}({{\bf\textit{ƞ}} } \otimes {{{\boldsymbol{I}}}_{{n_x}}}). $

结合式(21)、(22),再对式(14)使用Schur 补引理,得到$\varPi (k) < 0$,从而有,

$ {{E}}\{ V(k+1)\} < \alpha {{E}}\{ V(k)\} +{{{\boldsymbol{w}}}^{\mathrm{T}}}(k){{\boldsymbol{w}}}(k). $

进一步可知,

$ \begin{split} {{E}}\{ V(k)\} <& {\alpha ^k}V(0)+\sum\limits_{i = 0}^{k - 1} {{\alpha ^{k - 1 - i}}} {{{\boldsymbol{w}}}^{\mathrm{T}}}(i){{\boldsymbol{w}}}(i) <\\ & {\alpha ^N}V(0)+{\alpha ^N}\sum\limits_{i = 0}^N {{{{\boldsymbol{w}}}^{\mathrm{T}}}} (i){{\boldsymbol{w}}}(i)< {\alpha ^N}V(0)+{\alpha ^N}\omega . \end{split}$

${{\overline {\boldsymbol{P}}}_i} = {{{\boldsymbol{R}}}^{ - 1/2}}{{{\boldsymbol{P}}}_i}{{{\boldsymbol{R}}}^{ - 1/2}},{\text{ }}$则有

$ \begin{split} V(0) =& {{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{{\boldsymbol{P}}}_i}{{\boldsymbol{\xi}} }(0)={{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{{\boldsymbol{R}}}^{1/2}}{{{\overline {\boldsymbol{P}}}}_i}{{{\boldsymbol{R}}}^{1/2}}{{\boldsymbol{\xi}} }(0) \leqslant\\ &\mathop {\max }\limits_i \;\{ {\lambda _{{\text{max}}}}({{{\overline {\boldsymbol{P}}}}_i})\} {{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{\boldsymbol{R}}{\boldsymbol{\xi}} }(0). \end{split} $

由式(18)可知,

$ \begin{split} V(k) = &{{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{{\boldsymbol{P}}}_i}{{\boldsymbol{\xi}} }(k) ={{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{{\boldsymbol{R}}}^{1/2}}{{{\overline {\boldsymbol{P}}}}_i}{{{\boldsymbol{R}}}^{ - 1/2}}{{\boldsymbol{\xi}} }(k) \geqslant\\ & \mathop {\min }\limits_i \;\{ {\lambda _{{\text{min}}}}({{{\overline {\boldsymbol{P}}}}_i})\} {{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{\boldsymbol{R}}{\boldsymbol{\xi}} }(k).\end{split} $

由式(24)~(26)可以得到

$ \begin{split} &{{E}}\{ {{{\boldsymbol{\xi}} }^{\rm{T}}}(k){{\boldsymbol{R}}{\boldsymbol{\xi}} }(k)\}\leqslant \frac{{E\{ V(k)\} }}{{\mathop {\min }\limits_i \;\{ {\lambda _{\min }}({{{\overline {\boldsymbol{P}}}}_i})\} }} \leqslant \frac{{{\alpha ^N}V(0)+{\alpha ^N}\omega }}{{\mathop {\min }\limits_i \;\{ {\lambda _{\min }}({{{\overline {\boldsymbol{P}}}}_i})\} }}\leqslant \\ & \quad\frac{{{\alpha ^N}\mathop {\max }\limits_i \;\{ {\lambda _{{\text{max}}}}({{{\overline {\boldsymbol{P}}}}_i})\} {{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{\boldsymbol{R}}{\boldsymbol{\xi}} }(0)+{\alpha ^N}\omega }}{{\mathop {\min }\limits_i \;\{ {\lambda _{\min }}({{{\overline {\boldsymbol{P}}}}_i})\} }}. \\[-4pt]\end{split} $

式(16)两侧分别乘以${{{\boldsymbol{R}}}^{ - 1/2}}$得到

$ {\sigma _1}{{\boldsymbol{I}}} \leqslant {{\overline {\boldsymbol{P}}}_i} \leqslant {\sigma _2}{{\boldsymbol{I}}},\; i \in {{S}}. $

进一步得到

$ \left. \begin{gathered} \mathop {\max }\limits_i \;\{ {\lambda _{{\text{max}}}}({{{\overline {\boldsymbol{P}}}}_i})\} \leqslant {\sigma _2}, \\\; \mathop {\min }\limits_i \;\{ {\lambda _{{\text{min}}}}({{{\overline {\boldsymbol{P}}}}_i})\} \geqslant {\sigma _1}. \\ \end{gathered} \right\} $

将式(29)代入式(27)可以得到

$ {{E}}\{ {{{\boldsymbol{\xi}} }^{\mathrm{T}}}(k){{\boldsymbol{R}}{\boldsymbol{\xi}} }(k)\} \leqslant \frac{{{\alpha ^N}{\sigma _2}{{{\boldsymbol{\xi}} }^{\rm{T}}}(0){{\boldsymbol{R}}{\boldsymbol{\xi}} }(0)+{\alpha ^N}\omega }}{{{\sigma _1}}}. $

${{{\boldsymbol{\xi}} }^{\mathrm{T}}}(0){{\boldsymbol{R}}{\boldsymbol{\xi}} }(0) \leqslant {\delta _1}$,式(30)结合条件式(15)得到${{E}}\{ {{{\boldsymbol{\xi}} }^{\mathrm{T}}}(k){{\boldsymbol{R}}{\boldsymbol{\xi}} }(k)\} \leqslant {\delta _2}$,由定义2可知,闭环系统是随机有限时间有界的. 式中:$ {\lambda _{\max }}({\boldsymbol{Y}}) $为矩阵${\boldsymbol{Y}}$最大特征值,$ {\lambda _{\min }}({\boldsymbol{Y}}) $为矩阵${\boldsymbol{Y}}$的最小特征值.

证明: 闭环系统(8)具有${\ell _2} - {\ell _\infty }$水平. 对式(17)使用Schur补可以得到

$ {{\overline {\boldsymbol{C}}}^{\mathrm{T}}}{\overline {\boldsymbol{C}}} < {\overline \gamma ^2}{{{\boldsymbol{P}}}_i}. $

注意到式(8)中${{\boldsymbol{z}}}(k) = {\overline{\boldsymbol{ C}}{\boldsymbol{\xi}} }(k)$,从而有

$ {{E}}\{ {{{\boldsymbol{z}}}^{\mathrm{T}}}(k){{\boldsymbol{z}}}(k)\} <{{ E}}\{ {\overline \gamma ^2}V(k)\} . $

在零初始条件下,结合式(24)可以得到

$\begin{split} {{E}}\{ {{{\boldsymbol{z}}}^{\mathrm{T}}}(k){{\boldsymbol{z}}}(k)\} < {{\overline \gamma }^2}{\alpha ^N}\sum\limits_{i = 0}^N {{{{\boldsymbol{w}}}^{\mathrm{T}}}(i){{\boldsymbol{w}}}(i)} < {\gamma ^2}\sum\limits_{i = 0}^N {{{{\boldsymbol{w}}}^{\mathrm{T}}}(i){{\boldsymbol{w}}}(i)} , \end{split}$

对上式两端从0到$N$分别取上确界,根据式(13)可知闭环系统式(8)具有${\ell _2} - {\ell _\infty }$性能水平$\gamma $.

通过求解条件式(14)~(17),得到期望的控制器. 由于式(14)~(17)中具有非线性项,现有工具箱难以直接求解,为此将它们进一步转化为线性矩阵不等式的形式.

注2 由于式(14)中矩阵$ {\overline {\boldsymbol{A}}_i},i = 1,2 $具有式(10)中的形式,矩阵变量${\boldsymbol{ K}} $处于乘积项$ {\tilde {\boldsymbol{B}}_i}{\boldsymbol{K}}{\overline{\boldsymbol{ I}}_i},i = 1,2 $的中间,这种形式导致式(14)中的条件无法用常规变换进行线性化,使得线性化变得困难. 另外,式(10)中的矩阵$ {\overline {\boldsymbol{I}}_i},i = 1,2 $是行满秩的,总存在可逆矩阵${{\boldsymbol{M}}_i},i = 1,2$,使得${{\overline {\boldsymbol{I}}}_i}{{\boldsymbol{{M}}}_i} = \left[ {\begin{array}{*{20}{c}} {{\boldsymbol{I}}},{\boldsymbol{0}} \end{array}} \right],i = 1,2$. 一般来说,对应的矩阵${{{\boldsymbol{M}}}_i}$不唯一[38].

$ {{{\boldsymbol{M}}}_i} = \left[ {\begin{array}{*{20}{c}} {{{{\overline {\boldsymbol{I}}}}_i}^{\mathrm{T}}{{({{{\overline {\boldsymbol{I}}}}_i}{{{\overline {\boldsymbol{I}}}}_i}^{\mathrm{T}})}^{ - 1}}},{{\overline{\boldsymbol{ I}}}_i^ \bot } \end{array}} \right] . $

其中$ {\overline {\boldsymbol{I}}}_i^ \bot $$ {{\overline {\boldsymbol{I}}}_i} $的核空间的正交基. 可行的选择可以通过式(34)获得,${{\boldsymbol{M}}_i}$在定理2的推导过程中起重要的作用.

定理2 考虑线性离散系统式(1). 给定矩阵${{\boldsymbol{R}}} > 0$${{{\boldsymbol{M}}}_i}$、整数$N > 0$以及常量$ {{\delta }_2} > {{\delta }_1} > 0 $$ \alpha > 1 $$ {\overline \gamma } > 0 $$ \omega > 0 $. 如果存在矩阵${{\boldsymbol{X}}_i} > {\boldsymbol{0}}, i \in S$,矩阵$ {{\boldsymbol{Y}}} $$ {{\overline {\boldsymbol{G}}}_i} = {{{\boldsymbol{M}}}_i}{{\boldsymbol{GM}}}_i^{\mathrm{T}}, i \in \{ 1,2\} $,常量 ${\mu _1} > 0$${\mu _2} > 0$,其中$ {{\boldsymbol{G}}} = {\text{ diag}}\;\{ {{{\boldsymbol{G}}}_1},{{{\boldsymbol{G}}}_2}\} $满足条件:

$ \begin{split} &\begin{array}{l}\left[\begin{array}{llllll}{{\boldsymbol{\varOmega}}}_{i} & \ast & \ast & \ast & \ast & \ast \\ {{\boldsymbol{0}} }& -{{\boldsymbol{I}}}& \ast & \ast & \ast & \ast \\ \sqrt{{\pi }_{i1}}{{\bf\textit{Λ}}}_{i} & \sqrt{{\pi }_{i1}}\overline{{\boldsymbol{E}} } & -{{{\boldsymbol{X}}}}_{1}& \ast & \ast & \ast \\ \sqrt{{\pi }_{i2}}{\bf\textit{Λ}}_{i} & \sqrt{{\pi }_{i2}}\overline{{\boldsymbol{E}} } & {{\boldsymbol{0}} }& -{\boldsymbol{X}}_{2}& \ast & \ast \\ \sqrt{{\pi }_{i3}}{\bf\textit{Λ}}_{i} & \sqrt{{\pi }_{i3}}\overline{{\boldsymbol{E}} } & {{\boldsymbol{0}} }& {{\boldsymbol{0}} }& -{\boldsymbol{X}}_{3}& \ast \\ \sqrt{{\pi }_{i4}}{\bf\textit{Λ}}_{i} & \text{ }\sqrt{{\pi }_{i4}}\overline{{\boldsymbol{E}}}& {{\boldsymbol{0}} }& {{\boldsymbol{0}} }& {{\boldsymbol{0}} }& -{\boldsymbol{X}}_{4}\end{array}\right] < {{{{\boldsymbol{0}}}} },\end{array}\\&i=1,2;\\[-6pt]\end{split} $

$ \left[\begin{array}{lll}-{\delta }_{2}{\mu }_{1} & \ast & \ast \\ {\mu }_{1}\sqrt{{\alpha }^{N}{\delta }_{1}} & -{\mu }_{2}& \ast \\ {\mu }_{1} & 0& -\dfrac{1}{{\alpha }^{N}\omega }\end{array}\right] < {\boldsymbol{0}}; $

$ \begin{split} &\left[ {\begin{array}{*{20}{l}} { - \alpha {{\boldsymbol{X}}}_i}& * & * & * & * & * \\ {\boldsymbol{0}}&{ - {{\boldsymbol{I}}}}& * & * & * & * \\ {\sqrt {{{\pi }_{i1}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{X}}}_i}&{\sqrt {{{\pi }_{i1}}} {\overline {\boldsymbol{E}}}}&{ - {{\boldsymbol{X}}}_1}& * & * & * \\ {\sqrt {{{\pi }_{i2}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{X}}}_i}&{\sqrt {{{\pi }_{i2}}} {\overline {\boldsymbol{E}}}}&{\boldsymbol{0}}&{ - {{\boldsymbol{X}}}_2}& * & * \\ {\sqrt {{{\pi }_{i3}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{X}}}_i}&{\sqrt {{{\pi }_{i3}}} {\overline {\boldsymbol{E}}}}&{\boldsymbol{0}}&{\boldsymbol{0}}&{ - {{\boldsymbol{X}}}_3}& * \\ {\sqrt {{{\pi }_{i4}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{X}}}_i}&{\sqrt {{{\pi }_{i4}}} {\overline {\boldsymbol{E}}}}&{\boldsymbol{0}}&{\boldsymbol{0}}&{\boldsymbol{0}}&{ - {{\boldsymbol{X}}}_4} \end{array}} \right] < {\boldsymbol{0}},\\ & i=3,4;\\[-6pt]\end{split} $

$ \left[\begin{array}{ll}-{\boldsymbol{X}}_{i} & \ast \\ {\boldsymbol{R}}^{1/2}{\boldsymbol{X}}_{i} & -{\mu }_{1}\boldsymbol{I}\end{array}\right] < 0,\;i=1,2,3,4; $

$ \left[\begin{array}{ll}-{\mu }_{2}\boldsymbol{R} & \ast \\ {\mu }_{2}\boldsymbol{I} & -{\boldsymbol{X}}_{i}\end{array}\right] < 0,\;i=1,2,3,4; $

$ \left[\begin{array}{ll}-{\boldsymbol{X}}_{i} & \ast \\ \overline{{\boldsymbol{C}} }{\boldsymbol{X}}_{i} & -{\overline{\gamma }}^{2}\boldsymbol{I}\end{array}\right] < 0,\;i=1,2,3,4. $

其中$ {{{\boldsymbol{\varOmega}} }_i} = - \,{\overline {\boldsymbol{G}}} \,-\, {{{\overline {\boldsymbol{G}}}}^{\mathrm{T}}}\,+\,{\alpha ^{ - 1}}\,{{{\boldsymbol{X}}}_i}\,,\, {{{\overline{\boldsymbol{ I}}}}_3} = \left[ {\begin{array}{*{20}{c}} {{\boldsymbol{I}}},\,{{\boldsymbol{0}}} \end{array}} \right],\,\, {\boldsymbol{\varLambda}}_i=\overline{\boldsymbol{A}}_i \overline{\boldsymbol{G}}_i+ \tilde{\boldsymbol{B}}_i{\boldsymbol{Y}}\overline{\boldsymbol{I}}_3 {\boldsymbol{M}}_i^{\mathrm{T}}$. 则系统式(8)是随机有限时间有界的,并满足${\ell _2} - {\ell _\infty }$性能水平$ \gamma = \sqrt {{{\overline \gamma }^2}{\alpha ^N}} $.

证明:$i = 1,2$时,$ {\overline {\boldsymbol{A}}_i} $可以表示为式(10)中的形式. 引入矩阵

式(14)两侧分别乘以$ {\boldsymbol{D}}_1^{\mathrm{T}},{{\boldsymbol{D}}_1} $,得到

$ \left[ \begin{array}{llllll}{\bf\textit{Γ}}_{i} & \ast & \ast & \ast & \ast & \ast \\ {\boldsymbol{0}}& -{{\boldsymbol{I}}}& \ast & \ast & \ast & \ast \\ \sqrt{{\pi }_{i1}}{{\boldsymbol{Z}}}_{i} & \sqrt{{\pi }_{i1}}\overline {\boldsymbol{E}} & -{{\boldsymbol{P}}}_{1}^{-1}& \ast & \ast & \ast \\ \sqrt{{\pi }_{i2}}{{\boldsymbol{Z}}}_{i} & \sqrt{{\pi }_{i2}}\overline {\boldsymbol{E}} & {\boldsymbol{0}}& -{{\boldsymbol{P}}}_{2}^{-1}& \ast & \ast \\ \sqrt{{\pi }_{i3}}{{\boldsymbol{Z}}}_{i} & \sqrt{{\pi }_{i3}}\overline {\boldsymbol{E}} & {\boldsymbol{0}}& {\boldsymbol{0}}& -{{\boldsymbol{P}}}_{3}^{-1}& \ast \\ \sqrt{{\pi }_{i4}}{{\boldsymbol{Z}}}_{i} & \sqrt{{\pi }_{i4}}\overline {\boldsymbol{E}} & {\boldsymbol{0}}& {\boldsymbol{0}}& {\boldsymbol{0}}& -{{\boldsymbol{P}}}_{4}^{-1}\end{array} \right] < {{{\boldsymbol{0}}}}. $

其中

$ \begin{gathered} {{\bf\textit{Γ}}_i} = - \alpha {\overline {\boldsymbol{G}}}_i^{\mathrm{T}}{\boldsymbol{P}}_i{{{\overline {\boldsymbol{G}}}}_i},\;{{{\boldsymbol Z}}_i} = {{\overline {\boldsymbol{A}}}_i}{{{\overline {\boldsymbol{G}}}}_i}. \\ \end{gathered} $

将式(10)代入${{{{\boldsymbol{Z}}}}_i}$,注意到${{\overline {\boldsymbol{G}}}_i} = {{{\boldsymbol{M}}}_i}{{\boldsymbol{GM}}}_i^{\mathrm{T}}$,从而有

$ {{{ {\boldsymbol{Z}}}}_i} = {\tilde {\boldsymbol{A}}_i}{{\overline {\boldsymbol{G}}}_i}+{\tilde {\boldsymbol{B}}_i}{{\boldsymbol{K}}}{{\overline {\boldsymbol{I}}}_i}{{{\boldsymbol{M}}}_i}{{\boldsymbol{GM}}}_i^{\mathrm{T}}. $

注意到式(10)中的矩阵${{\overline {\boldsymbol{I}}}_i},i = 1,2$是行满秩的,根据注2可知${{\overline {\boldsymbol{I}}}_i}{{{\boldsymbol{M}}}_i} = \left[ {\begin{array}{*{20}{c}} {{\boldsymbol{I}}},{\boldsymbol{0}} \end{array}} \right]$${{\boldsymbol{G}}} = {\text{diag}}\;\{ {{{\boldsymbol{G}}}_1},{{{\boldsymbol{G}}}_2}\} $,式(43)可以进一步化简为

$ \begin{split} {{{\boldsymbol{Z}}}_i} = &{{\tilde {\boldsymbol{A}}}_i}{{{\overline {\boldsymbol{G}}}}_i}+{{\tilde {\boldsymbol{B}}}_i}{{\boldsymbol{K}}}\left[ {\begin{array}{*{20}{c}} {{\boldsymbol{I}}},{\boldsymbol{0}} \end{array}} \right]{\text{diag}}\;\{ {{{\boldsymbol{G}}}_1},{{{\boldsymbol{G}}}_2}\} {{\boldsymbol{M}}}_i^{\mathrm{T}}= \\ &{{\tilde {\boldsymbol{A}}}_i}{{{\overline {\boldsymbol{G}}}}_i}+{{\tilde{\boldsymbol{ B}}}_i}{{\boldsymbol{K}}}{{{\boldsymbol{G}}}_1}{{{\overline {\boldsymbol{I}}}}_3}{{\boldsymbol{M}}}_i^{\mathrm{T}}. \end{split} $

由于$\alpha > 0,{{{\boldsymbol{P}}}_i} > 0$,推导得到

$ - \alpha { {\overline {\boldsymbol{G}}}}_i^{\mathrm{T}}{{{\boldsymbol{P}}}_i}{{ {\overline {\boldsymbol{G}}}}_i} \leqslant - { {\overline {\boldsymbol{G}}}}_i^{\mathrm{T}} - {{ {\overline {\boldsymbol{G}}}}_i}+{\alpha ^{ - 1}}{{\boldsymbol{P}}}_i^{ - 1}. $

引入变量定义:

$ {{\boldsymbol{P}}}_i^{ - 1} = {{{\boldsymbol{X}}}_i},\;{{\boldsymbol{K}}}{{{\boldsymbol{G}}}_1} = {{\boldsymbol{Y}}}. $

得到条件式(35). 当$i = 3,4$时,引入矩阵

式(14)两侧分别乘以$ {\boldsymbol{D}}_2^{\mathrm{T}},{{\boldsymbol{D}}_2} $,得到

$ {\left[ {\begin{array}{*{20}{l}} { - \alpha {{\boldsymbol{P}}}_i^{ - 1}}& * & * & * & * & * \\ {\boldsymbol{0}}&{ - {{\boldsymbol{I}}}}& * & * & * & * \\ {\sqrt {{{\pi }_{i1}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{P}}}_i^{ - 1}}&{\sqrt {{{\pi }_{i1}}} {\overline {\boldsymbol{E}}}}&{ - {{\boldsymbol{P}}}_1^{ - 1}}& * & * & * \\ {\sqrt {{{\pi }_{i2}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{P}}}_i^{ - 1}}&{\sqrt {{{\pi }_{i2}}} {\overline {\boldsymbol{E}}}}&{\boldsymbol{0}}&{ - {{\boldsymbol{P}}}_2^{ - 1}}& * & * \\ {\sqrt {{{\pi }_{i3}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{P}}}_i^{ - 1}}&{\sqrt {{{\pi }_{i3}}} {\overline {\boldsymbol{E}}}}&{\boldsymbol{0}}&{\boldsymbol{0}}&{ - {{\boldsymbol{P}}}_3^{ - 1}}& * \\ {\sqrt {{{\pi }_{i4}}} {{\overline {\boldsymbol{A}}}_i}{{\boldsymbol{P}}}_i^{ - 1}}&{\sqrt {{{\pi }_{i4}}} {\overline {\boldsymbol{E}}}}&{\boldsymbol{0}}&{\boldsymbol{0}}&{\boldsymbol{0}}&{ - {{\boldsymbol{P}}}_4^{ - 1}} \end{array}} \right] < {\boldsymbol{0}}. }$

代入式(46)中的变量定义,可以得到式(37)中的条件. 再引入矩阵

式(16)等价转化为

将这2个不等式分别应用Schur补引理,得到

$ \left[\begin{array}{ll}-{\boldsymbol{P}}_{i} & \ast \\{\boldsymbol{R}}^{1/2} & -{\sigma }_{1}^{-1}\boldsymbol{I}\end{array}\right] < {\boldsymbol{0}}, $

$ \left[ {\begin{array}{*{20}{l}} { - {\sigma _2}{{\boldsymbol{R}}}}& * \\ {{\boldsymbol{I}}}&{ - {{\boldsymbol{P}}}_i^{ - 1}} \end{array}} \right] < {\boldsymbol{0}}. $

式(48)两端分别乘以$ {\boldsymbol{D}}_3^{\mathrm{T}}、{{\boldsymbol{D}}_3} $,式(49)两端分别乘以$ {\boldsymbol{D}}_4^{\mathrm{T}}、{{\boldsymbol{D}}_4} $,得到

$ \left[ {\begin{array}{*{20}{l}} { - {{\boldsymbol{P}}}_i^{ - 1}}& * \\ {{{{\boldsymbol{R}}}^{1/2}}{{\boldsymbol{P}}}_i^{ - 1}}&{ - {\sigma }_1^{ - 1}{{\boldsymbol{I}}}} \end{array}} \right] < {\boldsymbol{0}}, $

$ \left[ {\begin{array}{*{20}{l}} { - {\sigma }_2^{ - 1}{{\boldsymbol{R}}}}& * \\ {{\sigma }_2^{ - 1}{{\boldsymbol{I}}}}&{ - {{\boldsymbol{P}}}_i^{ - 1}} \end{array}} \right] < {\boldsymbol{0}}. $

$\sigma _1^{ - 1} = {\mu _1}$$\sigma _2^{ - 1} = {\mu _2}$,将式(46)代入式(50)、(51)中,可以得到式(38)、(39)中的条件. 对式(15)应用Schur补引理,得到

$ \left[ {\begin{array}{*{20}{l}} { - {{\delta }_2}{{\sigma }_1}+{{\alpha }^N}\omega }& * \\ {\sqrt {{{\alpha }^N}{{\delta }_1}} }&{ - {\sigma }_2^{ - 1}{{\boldsymbol{I}}}} \end{array}} \right] < {\boldsymbol{0}}. $

式(52)两侧分别乘以$ {\boldsymbol{D}}_5^{\mathrm{T}}、{{\boldsymbol{D}}_5} $,得到

$ \left[ {\begin{array}{*{20}{l}} { - {{\delta }_2}{\sigma }_1^{ - 1}+{\sigma }_1^{ - 1}{{\alpha }^N}\omega {\sigma }_1^{ - 1}}& * \\ {{\sigma }_1^{ - 1}\sqrt {{{\alpha }^N}{{\delta }_1}} }&{ - {\sigma }_2^{ - 1}{{\boldsymbol{I}}}} \end{array}} \right] < {\boldsymbol{0}}. $

对(53)再使用Schur补引理,得到

$ \left[\begin{array}{lll}-{\text{δ}}_{2}\sigma_{1}^{-1} & \ast & \ast \\ \sigma_{1}^{-1}\sqrt{\alpha^{N}{\text{δ}}_{1}} & -\sigma_{2}^{-1}& \ast \\ \sigma_{1}^{-1} & 0& -\dfrac{1}{\alpha^{N}\omega }\end{array}\right] < {\boldsymbol{0}}. $

代入$\sigma _1^{ - 1} = {\mu _1}$$\sigma _2^{ - 1} = {\mu _2}$,得到条件式(36). 式(17)两侧分别乘以$ {\boldsymbol{D}}_3^{\mathrm{T}}、{{\boldsymbol{D}}_3} $,得到

$ \left[\begin{array}{ll}-{\boldsymbol{P}}_{i}^{-1} & \ast \\ \overline {\boldsymbol C} {\boldsymbol{P}}_{i}^{-1} & -{\overline{\gamma }}^{2}\boldsymbol{I}\end{array}\right] < {\boldsymbol{0}}. $

再将式(46)代入,直接得到式(40)中的条件.

注3 定理2中不等式的保守性可以通过调整给定参数来降低. Ye等[37]指出,式(35)、(36)的保守性可以通过增大$\alpha $来降低,式(37)的保守性可以通过增大${\delta _2}$$\omega $来降低,式(38)、(39)的保守性可以通过增大${{\boldsymbol{R}}}$来降低,式(40)的保守性可以通过增大$\gamma $来降低. 因此,可以通过调整这些参数来增强线性矩阵不等式的可解性.

注4 定理2的计算复杂性取决于系统式(1)的维数. 系统式(1)的维数越高,定理2中相关不等式的维数越高,计算时间也越长. 随着计算机技术的发展,计算机计算速度显著提高,计算复杂性不再是太大的问题.

3. 仿真示例

示例1 考虑线性系统式(1),相关系统矩阵为

系统矩阵${\boldsymbol{A}}$的特征值为$ \left\{ {0.163,1.023} \right\} $,开环系统是不稳定的. 考虑转移矩阵

为了便于仿真,相关参数取值如下:$\alpha = 1.021$${\delta _1} = 1$${\delta _2} = 500$$\overline \gamma = 0.6$$N = 100$${{\boldsymbol{R}}} = 0.1{{\boldsymbol{I}}}$. 假设系统的干扰信号$ {{\boldsymbol{w}}}(k) = 1.25/(1+{k^2}) $,由于$ \displaystyle\sum\nolimits_{k = 0}^{100} {{{{\boldsymbol{w}}}^{\mathrm{T}}}(k){{\boldsymbol{w}}}(k)} = 2.04 $,取式(2)中的上界$\omega = 2.1$. ${{{\boldsymbol{M}}}_1}$${{{\boldsymbol{M}}}_2}$分别取维数为$6 \times 6$的单位阵${{\boldsymbol{I}}_{6 \times 6}}$和副对角线元素为1 的反对角矩阵. 可以验证,${{\overline {\boldsymbol{I}}}_i}{{{\boldsymbol{M}}}_i} = \left[ {{\boldsymbol{I}}} , {\boldsymbol{0}} \right],i \in \{ 1,2\} .$系统初始条件分别为${{\boldsymbol{x}}}(0) = {\left[ 3 , { - 0.1} \right]^{\mathrm{T}}}$${\overline {\boldsymbol{u}}}( - 1) = {\left[ 0 , 0 \right]^{\mathrm{T}}}$. 根据定理2,得到状态反馈增益为

DoS攻击具有随机性,为此进行500次仿真实验,得到的状态响应、控制输入和${{{\boldsymbol{x}}}^{\mathrm{T}}}(k){{\boldsymbol{Rx}}}(k)$的变化趋势分别如图2所示. 由图可知,系统状态在有限时间内收敛. 另外,初始条件满足${{{\boldsymbol{x}}}^{\mathrm{T}}}(0){{\boldsymbol{Rx}}}(0) < {\delta _1} = 1$,当$ k\in \left[1,N\right]时 $$ {{E}}\{ {{{\boldsymbol{x}}}^{\mathrm{T}}}(k){{\boldsymbol{Rx}}}(k)\} < {\delta _2} = 500 $,说明系统有限时间有界. 由此可见,在双通道DoS攻击下系统仍然能良好地运行.

图 2

图 2   状态响应变量、控制输入和有界变量的单次仿真及多次仿真平均值的变化趋势(示例1)

Fig.2   Variation trend of state response variables, control inputs and bounded variables for single simulation and multiple simulation averages (example one)


为了研究不同概率下的DoS攻击对控制性能的影响,取不同的概率转移矩阵进行仿真试验. 由式(5)、(6)可知:转移矩阵的第1列代表下一时刻没有DoS攻击的概率;第2~4列元素表示2个通道中至少有1个通道出现攻击的概率. 这说明,第1列元素值越小,系统出现DoS 攻击的概率就越大,系统越不安全. 引入转移矩阵

根据第$1$列元素可知,${{{\bf\textit{Ψ}} }_1},{{{\bf\textit{Ψ}} }_2}$${{{\bf\textit{Ψ}} }_3}$代表DoS攻击的概率依次增强. 为了简化问题,每个转移概率矩阵的第2~4列元素分别取相同的值,其他参数值均与${{{\bf\textit{Ψ}} }_1}$条件下的设置相同. 根据定理2,分别求出${{{\bf\textit{Ψ}} }_2},{{{\bf\textit{Ψ}} }_3}$对应的反馈增益矩阵为

${{{\bf\textit{Ψ}} }_1},{{{\bf\textit{Ψ}} }_2},{{{\bf\textit{Ψ}} }_3}$下分别进行$500$次仿真实验,某一次实验中$\theta (k)$的变化情况如图3所示. 由(5)可知:$\theta (k) = 1$表示 S-C与C-A通道中均没有DoS攻击,$\theta (k) = 2$$\theta (k) = 3$$\theta (k) = 4$分别表示S-C通道中有DoS攻击,C-A通道有DoS攻击,2个通道同时存在DoS攻击. 可以看出,${{{\bf\textit{Ψ}} }_1}$${{{\bf\textit{Ψ}} }_2}$${{{\bf\textit{Ψ}} }_3}$对应的$\theta (k) = 1$出现的次数越来越少. 实际上,在500次仿真实验中,${{{\bf\textit{Ψ}} }_1}$${{{\bf\textit{Ψ}} }_2}$${{{\bf\textit{Ψ}} }_3}$对应$\theta (k) = 1$出现的平均次数分别为85.24、40.75和19. 94次. 即无DoS 攻击的时刻越来越少,说明DoS 攻击出现的概率在依次增大.

图 3

图 3   不同转移矩阵下拒绝服务攻击模态的变化情况

Fig.3   Variation of denial-of-service attack mode under different transition matrices


在500次独立仿真实验中,不同转移矩阵下状态响应变量和有界变量的平均值的变化情况如图4所示. 由图可知,不同转移矩阵${{{\bf\textit{Ψ}} }_1}$${{{\bf\textit{Ψ}} }_2}$${{{\bf\textit{Ψ}} }_3}$对应系统的响应速度越来越慢,${{{\bf\textit{Ψ}} }_1}$${{{\bf\textit{Ψ}} }_2}$${{{\bf\textit{Ψ}} }_3}$对应的${{E}}\{ {{{\boldsymbol{x}}}^{\mathrm{T}}}(k){{\boldsymbol{Rx}}}(k)\} $上界越来越大. 综上所述,随着DoS攻击发生的概率增强,系统的控制性能虽然有所下降,但是定理2中的算法依然能使系统有效的运作,表明此算法对DoS攻击具有鲁棒性.

图 4

图 4   状态响应变量和有界变量的多次仿真平均值变化趋势

Fig.4   Variation tend of state response variables and bounded variables for multiple simulation averages


示例2 考虑受外部干扰的角度定位系统[2],该系统的状态空间模型为

其中

为了便于仿真,系统参数$\rho (k) = 1$$\kappa = 0.787$,选取概率转移矩阵

$\alpha = 1.025$,外界干扰信号${{\boldsymbol{w}}}(k)$,初始条件${{\boldsymbol{x}}}(0)$${\overline {\boldsymbol{u}}}( - 1)$以及其余参数${\delta _1}$${\delta _2}$$\overline \gamma $$N$${{\boldsymbol{R}}}$$\omega $${{M}_1}$${{M}_2}$的选取与例1 相同. 根据定理2,得到状态反馈增益为

与示例1相同,通过$500$次仿真实验,得到的状态响应、控制输入和$ {{{\boldsymbol{x}}}^{\mathrm{T}}}(k){{\boldsymbol{Rx}}}(k) $的变化趋势如图5所示. 初始条件满足${{{\boldsymbol{x}}}^{\mathrm{T}}}(0){{\boldsymbol{Rx}}}(0) < {\delta _1} = 1$,当$k \in [1,N] $时,$ {{E}}\{ {{{\boldsymbol{x}}}^{\mathrm{T}}}(k){{\boldsymbol{Rx}}}(k)\} < {\delta _2} = 500 $,根据定义2可知系统是有限时间有界的. 仿真结果显示,系统在DoS攻击的影响下仍然满足稳定性要求并具有一定的${\ell _2} - {\ell _\infty }$性能,该系统的仿真验证了本研究算法具有一定的工程应用价值.

图 5

图 5   状态响应变量、控制输入和有界变量的单次仿真及多次仿真平均值的变化趋势(示例2)

Fig.5   Variation trend of state response variables, control inputs and bounded variables for single simulation and multiple simulation average (example two)


4. 结 语

本研究考虑S-C和C-A通道可能都遭受DoS攻击的情形,将DoS攻击的动态特性建模为马尔可夫随机过程. 相比于现有研究,本研究不仅针对更广泛的DoS攻击场景进行建模分析,还引入有限时间稳定性分析方法,设计了状态反馈控制器,确保控制系统在有限时间内的稳定性和对外部干扰的鲁棒性. 数值算例和角度定位系统的实验结果表明,本研究提出的算法能够在DoS攻击和外部干扰的情况下保持稳定. 这些研究成果为NCSs在复杂通信环境下的稳定运行提供了新的理论支持和方法参考. 马尔可夫过程的无记忆性限制了它对复杂攻击模式的描述能力. 未来研究将采用更一般的半马尔可夫随机过程来描述DoS攻击的动态特性,结合通信约束、信道衰减、量化效应等网络现象来全面研究NCSs的有限时间控制问题.

参考文献

HU Z, CHEN K, DENG F, et al

${H_\infty }$ controller design for networked systems with two-channel packet dropouts and FDI attacks

[J]. IEEE Transactions on Cybernetics, 2024, 54 (3): 1661- 1670

DOI:10.1109/TCYB.2022.3233065      [本文引用: 3]

QIU L, SHI Y, YAO F, et al

Network based robust ${H_2}/{H_\infty }$control for linear systems with two-channel random packet dropouts and time delays

[J]. IEEE Transactions on Cybernetics, 2015, 45 (8): 1450- 1462

DOI:10.1109/TCYB.2014.2352291      [本文引用: 1]

JIAO S, XU S

Observed-mode-dependent nonfragile control of networked control systems under hidden DoS attacks

[J]. IEEE Transactions on Control of Network Systems, 2024, 11 (1): 139- 149

DOI:10.1109/TCNS.2023.3272824      [本文引用: 2]

GUO L, ZHANG D. ${H_\infty }$ filtering for networked control systems with two-channel packet dropouts and mixed random delays using delta operator [C]// Proceedings of the IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society . Washington: IEEE, 2018: 5889–5894.

[本文引用: 1]

XU J, GU G, GUPTA V, et al

Optimal stationary state estimation over multiple Markovian packet drop channels

[J]. Automatica, 2021, 128: 109561

DOI:10.1016/j.automatica.2021.109561      [本文引用: 1]

WU W, GAO W, LIN J. Data-based predictive control with delay compensation for networked nonlinear systems with packet dropouts and delays in two channels [C]// Proceedings of the Chinese Automation Congress . Jinan: IEEE, 2017: 2888–2893.

[本文引用: 1]

李志强. 拒绝服务攻击下信息物理系统的事件触发安全控制研究 [D]. 北京: 北京科技大学, 2022: 1–155.

[本文引用: 2]

LI Zhiqiang. Event-triggered security control of cyber-physical systems under denial-of-service attacks [D]. Beijing: University of Science and Technology Beijing, 2022: 1–155.

[本文引用: 2]

ZENG P, DENG F, ZHANG H, et al

Event-based ${H_\infty }$control for discrete-time fuzzy Markov jump systems subject to DoS attacks

[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (6): 1853- 1863

DOI:10.1109/TFUZZ.2021.3069345      [本文引用: 3]

程志键. 攻击环境下网络化系统的状态估计问题研究[D]. 合肥: 中国科学技术大学, 2022: 1–127.

[本文引用: 1]

CHENG Zhijian. Research on state estimation of networked systems in attack environment [D]. Hefei: University of Science and Technology of China, 2022: 1–127.

[本文引用: 1]

MA L, ZHANG Y, YANG C, et al

Security control for two-time-scale cyber physical systems with multiple transmission channels under DoS attacks: the input-to-state stability

[J]. Journal of the Franklin Institute, 2021, 358 (12): 6309- 6325

DOI:10.1016/j.jfranklin.2021.05.017      [本文引用: 1]

WANG X, YANG H, ZHONG S

Improved results on consensus of nonlinear MASs with nonhomogeneous Markov switching topologies and DoS cyber attacks

[J]. Journal of the Franklin Institute, 2021, 358 (14): 7237- 7253

DOI:10.1016/j.jfranklin.2021.07.044     

CHENG G, LIU H

Asynchronous finite-time ${H_\infty }$ filtering for linear neutral semi-Markovian jumping systems under hybrid cyber attacks

[J]. Journal of the Franklin Institute, 2023, 360 (3): 1495- 1522

DOI:10.1016/j.jfranklin.2022.12.025     

YANG W, ZHANG Y, CHEN G, et al

Distributed filtering under false data injection attacks

[J]. Automatica, 2019, 102: 34- 44

DOI:10.1016/j.automatica.2018.12.027      [本文引用: 1]

GUO H, PANG Z, SUN J, et al

An output-coding-based detection scheme against replay attacks in cyber-physical systems

[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68 (10): 3306- 3310

[本文引用: 1]

HE H, CHEN Y, QI W, et al

Observer-based resilient control of positive systems with heterogeneous DoS attacks: a Markov model approach

[J]. Journal of the Franklin Institute, 2022, 359 (1): 272- 293

DOI:10.1016/j.jfranklin.2021.04.034      [本文引用: 1]

HUANG L, GUO J, LI B

Observer-based dynamic event-triggered robust ${H_\infty }$control of networked control systems under DoS attacks

[J]. IEEE Access, 2021, 9: 145626- 145637

DOI:10.1109/ACCESS.2021.3121689      [本文引用: 1]

ZHENG X, ZHANG H, WANG L, et al

Dynamic event-based distributed piecewise filtering over sensor networks under periodic DoS attacks

[J]. IEEE Transactions on Control of Network Systems, 2023, 10 (2): 853- 864

DOI:10.1109/TCNS.2022.3210858      [本文引用: 1]

TIAN E, WANG X, PENG C

Probabilistic-constrained distributed filtering for a class of nonlinear stochastic systems subject to periodic DoS attacks

[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67 (12): 5369- 5379

DOI:10.1109/TCSI.2020.3007953      [本文引用: 1]

XU Q, ZHANG N, QI W

Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks

[J]. Applied Mathematics and Computation, 2023, 443: 127783

DOI:10.1016/j.amc.2022.127783      [本文引用: 1]

YE Z, ZHANG D, YAN H, et al

A semi-Markovian jumping system approach to secure DPC of nonlinear networked unmanned marine vehicle systems with DoS attack

[J]. Journal of the Franklin Institute, 2023, 360 (16): 12552- 12575

DOI:10.1016/j.jfranklin.2021.07.054      [本文引用: 1]

QI W, HOU Y, PARK J, et al

SMC for discrete-time networked semi-Markovian switching systems with random DoS attacks and applications

[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (3): 1982- 1993

DOI:10.1109/TSMC.2022.3211322      [本文引用: 2]

SHI T, SHI P, CHAMBERS J

Dynamic event-triggered model predictive control under channel fading and denial-of-service attacks

[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21 (4): 6448- 6459

DOI:10.1109/TASE.2023.3325534      [本文引用: 2]

YUAN Y, YUAN H, HO D, et al

Resilient control of wireless networked control system under denial-of-service attacks: a cross-layer design approach

[J]. IEEE Transactions on Cybernetics, 2020, 50 (1): 48- 60

DOI:10.1109/TCYB.2018.2863689      [本文引用: 2]

ZHAO N, SHI P, XING W, et al

Resilient adaptive event-triggered fuzzy tracking control and filtering for nonlinear networked systems under denial-of-service attacks

[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (8): 3191- 3201

DOI:10.1109/TFUZZ.2021.3106674      [本文引用: 2]

GENG Q, YANG H, LI L, et al

Hybrid dynamic event-triggered tracking control of wheeled mobile robots against stochastic DoS attacks

[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53 (12): 7805- 7813

DOI:10.1109/TSMC.2023.3299269      [本文引用: 2]

LIAN J, LI H, WU F, et al. Time-triggered control of double channel transmission networked switched systems under DoS attacks [C]// Proceedings of the 42nd Chinese Control Conference . Tianjin: IEEE, 2023: 5263–5268.

[本文引用: 2]

黄鹤, 谢德晓, 韩笑冬, 等

具有随机丢包的一类网络控制系统的故障检测

[J]. 控制理论与应用, 2011, 28 (1): 79- 86

[本文引用: 1]

HUANG He, XIE Dexiao, HAN Xiaodong, et al

Fault detection for networked control system with random packet dropout

[J]. Control Theory and Applications, 2011, 28 (1): 79- 86

[本文引用: 1]

ZHANG H, XU S

Finite-time almost sure stability of a Markov jump fuzzy system with delayed inputs

[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (6): 1801- 1808

DOI:10.1109/TFUZZ.2021.3067797      [本文引用: 1]

WANG Z, SHEN L, XIA J, et al

Finite-time non-fragile ${l_2} - {l_\infty }$ control for jumping stochastic systems subject to input constraints via an event-triggered mechanism

[J]. Journal of the Franklin Institute, 2018, 355 (14): 6371- 6389

DOI:10.1016/j.jfranklin.2018.06.030      [本文引用: 2]

ZHAO Y, MA Y

Adaptive event-triggered finite-time sliding mode control for singular T-S fuzzy Markov jump systems with asynchronous modes

[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 126: 107465

DOI:10.1016/j.cnsns.2023.107465      [本文引用: 1]

DORATO P. Short-time stability in linear time-varying systems [R]. Brooklyn: Polytechnic Institute of Brooklyn, 1961: 83–87.

[本文引用: 1]

AMATO F, ARIOLA M, DORATO P

Finite-time control of linear systems subject to parametric uncertainties and disturbances

[J]. Automatica, 2001, 37 (9): 1459- 1463

DOI:10.1016/S0005-1098(01)00087-5      [本文引用: 1]

LI F, SHEN H, CHEN M, et al

Non fragile finite-time ${l_2} - {l_\infty }$ state estimation for discrete-time Markov jump neural networks with unreliable communication links

[J]. Applied Mathematics and Computation, 2015, 271: 467- 481

DOI:10.1016/j.amc.2015.09.029      [本文引用: 1]

CHEN H, GAO F

Finite-time asynchronous state estimation for jump systems with partial transition probabilities via redundant channels: a co-design method

[J]. Journal of the Franklin Institute, 2021, 358 (18): 10095- 10120

DOI:10.1016/j.jfranklin.2021.09.032      [本文引用: 1]

SHEN H, LIU X, XIA J, et al

Finite-time energy-to-peak fuzzy filtering for persistent dwell-time switched nonlinear systems with unreliable links

[J]. Information Sciences, 2021, 579: 293- 309

DOI:10.1016/j.ins.2021.07.081      [本文引用: 1]

REN H, ZONG G, QIAN X, et al

Hybrid event-based asynchronous finite-time control for cyber-physical switched systems under denial-of-service attacks

[J]. Journal of the Franklin Institute, 2023, 360 (2): 1036- 1057

DOI:10.1016/j.jfranklin.2022.11.028      [本文引用: 1]

YE Z, ZHANG D, DENG C, et al

Finite-time resilient sliding mode control of nonlinear UMV systems subject to DoS attacks

[J]. Automatica, 2023, 156: 111170

DOI:10.1016/j.automatica.2023.111170      [本文引用: 2]

SHI T, LU R, LV Q

Robust static output feedback infinite horizon RMPC for linear uncertain systems

[J]. Journal of the Franklin Institute, 2016, 353 (4): 891- 902

DOI:10.1016/j.jfranklin.2016.01.012      [本文引用: 1]

/