浙江大学学报(工学版), 2025, 59(4): 741-749 doi: 10.3785/j.issn.1008-973X.2025.04.009

土木与建筑工程

降承压水引起的软黏土中自由单桩变形特性分析

应宏伟,, 刘冠, 高慧颖, 章丽莎, 熊一帆

1. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210024

2. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058

3. 浙大城市学院 土木工程系,浙江 杭州 310015

Deformation characteristics analysis of free single pile in soft clay induced by dewatering in confined aquifer

YING Hongwei,, LIU Guan, GAO Huiying, ZHANG Lisha, XIONG Yifan

1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, China

2. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China

3. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China

收稿日期: 2023-12-20  

基金资助: 中国博士后科学基金资助项目(2021M690883);国家自然科学基金资助项目(51678523);中央高校基本科研业务费资助项目(B200201012).

Received: 2023-12-20  

Fund supported: 中国博士后科学基金资助项目(2021M690883);国家自然科学基金资助项目(51678523);中央高校基本科研业务费资助项目(B200201012).

作者简介 About authors

应宏伟(1971—),男,教授,博士,从事土力学及岩土工程研究.orcid.org/0000-0003-2079-6504.E-mail:ice898@zju.edu.cn , E-mail:ice898@zju.edu.cn

摘要

抽降承压水引起上覆弱透水层发生释水固结沉降,影响既有桩基础服役性能甚至导致灾变. 在大面积瞬时减压降水引起土层固结沉降研究的基础上,采用荷载传递法建立桩体平衡方程,解得瞬时减压降水引发均质弱透水层中自由摩擦单桩受力变形的半解析解,通过退化至“虚土桩”及与有限元数值解的对比验证半解析解的合理性. 以实际工程为背景构建算例,揭示减压降水作为诱因时弱透水层沉降随时间和深度的发展过程以及自由单桩的受力变形特性,并进行参数影响分析. 结果表明,抽降承压水引起的弱透水层固结和对自由单桩的影响均自下而上发展,与桩基工程传统认识的“上部先于下部发展”不同;桩径越大,桩顶沉降越小但桩身轴力越大;承压水降深越大,桩侧摩阻力发展越快,桩身轴力和桩顶沉降越大;桩长越长,桩身轴力越大. 中性点深度随桩长增加有相对下移的趋势,增加桩长可显著减小未打穿弱透水层的单桩沉降.

关键词: 固结 ; 荷载传递法 ; 负摩阻力 ; 承压水降水 ; 轴向受荷单桩

Abstract

The confined water dewatering leads to consolidation in the overlying aquitard, subsequently affecting the operational performance of the current pile foundation and potentially resulting in catastrophic outcomes. A pile equilibrium equation was derived using the load transfer method, based on existing research on soil layer consolidation induced by instantaneous dewatering in the aquifer. The semi-analytical solutions for the deformation characteristics of a free single friction pile in a homogeneous aquitard caused by instantaneous pressure-relief pumping were obtained, and the solution was verified by the degeneration to “virtual soil pile” and the comparison with the FEM numerical solution. Based on a pile foundation project case, the development process of aquitard settlement with time and depth, the stress and deformation characteristics of a free single pile induced by pumping down confined water were revealed, and a parametric impact analysis was carried out. Results show that the consolidation of the aquitard induced by instantaneous dewatering in the underlying confined aquifer and its impact on free single piles develop from bottom to top, contrary to the traditional understanding in pile foundation engineering of a “top-down” progression. The larger the pile diameter, the smaller the pile head settlement, but the greater the pile axial force. The greater the drawdown of confined water, the faster the development of skin friction, leading to increased axial force and pile head settlement. As the pile length increases, the axial force also increases. The depth of the neutral point exhibits a relative downward trend with increasing pile length, and an increase in pile length significantly reduces settlement for unpierced single piles.

Keywords: consolidation ; load transfer method ; negative skin friction ; confined water dewatering ; axially loaded single pile

PDF (1198KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

应宏伟, 刘冠, 高慧颖, 章丽莎, 熊一帆. 降承压水引起的软黏土中自由单桩变形特性分析. 浙江大学学报(工学版)[J], 2025, 59(4): 741-749 doi:10.3785/j.issn.1008-973X.2025.04.009

YING Hongwei, LIU Guan, GAO Huiying, ZHANG Lisha, XIONG Yifan. Deformation characteristics analysis of free single pile in soft clay induced by dewatering in confined aquifer. Journal of Zhejiang University(Engineering Science)[J], 2025, 59(4): 741-749 doi:10.3785/j.issn.1008-973X.2025.04.009

沿海地区广泛分布着抗剪强度较低,压缩性较高,渗透性较小的软土(如淤泥、淤泥质土). 除传统的外力作用(如地面堆载、堤坝堆筑)引起软土固结发生沉降外,随着城市建设和地下空间开发的力度不断增大,工程降水活动诱发的软土地基沉降日趋严重. 桩基础作为软土地区城市建筑常用的基础形式,地层沉降必将影响既有桩基服役性能甚至导致灾变.

骆冠勇等[1]提出由承压水减压引起的固结沉降计算方法. Liu等[2-8]进一步研究了多层土、弱透水层以及承压含水层的流变性、初始水头沿深度非均匀分布、固结和渗透的非线性对承压水减压引起的地层沉降. 土的沉降大于桩的位移会使桩侧产生负摩阻力,继而降低桩身承载力,引起不均匀沉降. 关于负摩阻力的研究多集中于大面积堆载以及潜水降水工程场景. Chen等[9-11]考虑弱透水层的非均质性,采用不同的荷载传递法研究大面积堆载引起的桩土关系问题;Liu等[12-13]从二维和三维固结角度分析堆载下的桩土关系问题;贾煜等[14]引入桩体自重,提出潜水水位下降诱发的基桩沉降计算方法. 大面积堆载以及降潜水引起的弱透水层固结均是自上而下进行的,这2种工况下桩土关系的变化有相似的发展规律.

针对由承压水减压引起的基桩受力变形问题的研究不多. 刘御刚等[15-16]初步研究了承压水减压和桩顶同时受荷引起的基桩受力变形问题,由于桩土关系的变化主要受桩顶加载的影响,得出“桩顶附近桩周土先进入塑性,随后在塑性区自上而下扩展”的规律. 该规律与传统桩顶轴向受荷条件下桩土界面的发展趋势相同[17-18]. 承压水降水诱发的弱透水层沉降是由自上而下的越流作用引起的,与如大面积堆载、降潜水的附加应力作用有所不同. 上述研究未能揭示降承压水引起的弱透水层固结对桩土作用机制的影响,对抽降承压水引起的软黏土中未打穿自由单桩受力特性的认识尚不深入. 本研究基于太沙基一维固结理论,采用理想弹塑性荷载传递模型,推导承压水大面积降水诱发软黏土弱透水层中未打穿自由单桩受力变形特性的半解析解,深入分析承压水减压降水引起弱透水层中既有基桩的桩土作用机制.

1. 理论计算模型

承压水降水引起的软黏土中自由单桩的受力变形问题计算简图如图1所示. 图中,l为桩长,hc为承压含水层降深,H为弱透水层厚度. 减压降水引起的土体沉降是由于下卧承压含水层水头的降低改变了弱透水层底部水头边界条件,在越流作用下弱透水层中的孔隙水应力变化引发有效应力的变化,使得软土层发生固结沉降. 此外,桩土间的刚度存在差异,土体的沉降引发桩土接触面接触力改变,从而影响桩土相互关系.

图 1

图 1   承压水降水诱发弱透水层中基桩竖向响应的力学模型

Fig.1   Mechanical model of pile vertical response in aquitard induced by confined water dewatering


1.1. 基本假定

1)地基为半无限弹性体,忽略桩及桩周土的径向变形;地基土为均质、各向同性材料,土的固结符合太沙基一维线性固结理论[19],不考虑压缩模量随深度的变化. 2) 桩顶和地基表面无附加荷载,土体和桩的沉降仅由承压含水层减压降水引起. 3) 桩体为可压缩的均质弹性体,应力-应变关系满足虎克定律,忽略成桩施工对地基土的影响. 4) 基桩未打穿弱透水层,桩侧与土相互关系满足理想弹塑性荷载传递规律,桩端土反力与桩端刺入变形采用线弹性假定. 5) 承压水大面积降水且瞬时完成. 6) 下部含水层压缩性远低于上部弱透水层,忽略抽降承压水引起含水层中的沉降.

1.2. 桩周土体固结沉降方程

基于太沙基一维固结理论,瞬时降承压水条件下土体固结沉降随时间发展的计算式[16,20]

$ \begin{split} {s_{\text{s}}} = &\;\frac{{{m_{\text{v}}}{p_{\text{c}}}H}}{2} - \frac{{{m_{\text{v}}}{p_{\text{c}}}{z^2}}}{{2H}}+ \\ &\sum\limits_{n = 1}^\infty {\frac{{{H^2}{d_1}}}{{{N^2}}}} \cos \left( {\frac{{Nz}}{H}} \right) - \sum\limits_{n = 1}^\infty {\frac{{2{p_{\text{c}}}H}}{{{N^2}}}} {{\text{e}}^{ - {N^2}{T_{\text{v}}}}}{m_{\text{v}}}; \\ {p_{\mathrm{c}}} = &\;{\gamma _{\mathrm{w}}}{h_{\mathrm{c}}}, \; {T_{\mathrm{v}}} = {{{c_{\mathrm{v}}}t}}/{{{H^2}}},\; N = n{\text{π}} . \end{split} $

式中:γw为水的重度,mv为体积压缩系数,cv为软土层固结系数,t为固结时间,n为正整数.

1.3. 桩体平衡方程

基于桩单元静力平衡方程和弹性压缩方程,得到桩土荷载传递基本方程:

$ \frac{{{{\text{d}}^2}{s_{\text{p}}}}}{{{\text{d}}{z^2}}} = \frac{{{{\text{d}}^2}s}}{{{\text{d}}{z^2}}}+\frac{{{{\text{d}}^2}{s_{\text{s}}}}}{{{\text{d}}{z^2}}}. $

式中:sp为桩身竖向位移,ss为土的竖向位移,s为桩土相对位移. 如图2所示,桩侧荷载传递模型采用理想弹塑性模型[21]. 根据桩土相对位移的方向和正、负摩阻力的定义,对应的桩侧土的荷载传递函数表示为

图 2

图 2   桩侧荷载传递模型

Fig.2   Shaft load transfer model


$ \tau =\left\{ \begin{array}{ll} ks = k\left( {{s_{\text{p}}} - {s_{\text{s}}}} \right){\text{,}}&-{s_{\text{f}}} \leqslant s \leqslant 0; \\ {\tau _{\text{f}}} = - k{s_{\text{f}}}{\text{, }}&s \leqslant -{s_{\text{f}}}; \\ ks = k\left( {{s_{\text{p}}} - {s_{\text{s}}}} \right){\text{, }}& 0 \leqslant s \leqslant {s_{\text{f}}}; \\ {\tau _{\text{f}}} = k{s_{\text{f}}}{\text{, }}& s \geqslant {s_{\text{f}}}. \end{array} \right. $

式中:k为土体弹性阶段刚度系数,τf为弹性阶段桩侧极限摩阻力,sf为桩侧摩阻力达到极限值时对应的桩-土相对位移. 假定桩端反力Pb与桩端处桩土相对位移sb满足线性关系[22],则平衡方程为

$ {P_{\text{b}}} = {K_{\text{b}}}{s_{\text{b}}}. $

式中:sb=spssKb为桩端处的荷载传递函数系数,Kb=dEb/[η(1−υ2)]. 其中Eb为桩端下卧层的平均弹性模量;η为沉降折减系数,η=0.5~0.78;υ为桩端土体的泊松比;d为桩径.

2. 桩-土荷载传递方程的建立和求解

与如堆载的常规附加应力引起的土体自上而下的固结不同,抽降承压水引起弱透水层固结是自下而上进行的[5, 20]. 根据固结进程不同,以桩土相对位移达到界限位移作为桩土界面弹塑性分界点,桩土界面的变化和桩的受力可分为3个阶段:1)桩侧土均为弹性,2)桩端附近桩侧土进入塑性,3)桩顶附近桩侧土进入塑性.

2.1. 桩侧土均为弹性

当桩侧-土界面未达到塑性状态时,假定中性点深度为l0,桩的受力如图3所示. 联立式(1)~(3),得到桩土相对位移:

图 3

图 3   单桩受力分析图(桩周土全弹性阶段)

Fig.3   Single pile force analysis diagram (full elastic stage of soil adjacent to pile)


$ \begin{split} {s_1} =&\; {C_1}{{\text{e}}^{\alpha z}}+{C_2}{{\text{e}}^{ - \alpha z}} - \frac{{{m_{\text{v}}}{p_{\text{c}}}}}{{{\alpha ^2}H}} - \\ &\sum\limits_{n = 1}^\infty {\frac{{{d_1}}}{{{\alpha ^2}+\dfrac{{{N^2}}}{{{H^2}}}}}} \cos \left( {\frac{{Nz}}{H}} \right){\text{,}}\;\;-{s_{\text{f}}} \leqslant s \leqslant {s_{\text{f}}}.\end{split} $

$ \alpha = \sqrt {\frac{{Uk}}{{{E_{\text{p}}}{A_{\text{p}}}}}} . $

式中:C1C2为待定常数,U为桩身截面周长,EpAp分别为桩的弹性模量和截面面积. 轴力表达式为

$ \begin{split} {N_1} =&\; - {E_{\text{p}}}{A_{\text{p}}} \Biggr( {{C_1}\alpha {{\text{e}}^{\alpha z}} - {C_2}\alpha {{\text{e}}^{ - \alpha z}} - \frac{{{m_{\text{v}}}{p_{\text{c}}}}}{H}z+} \Biggr. \\ &\Biggr. {\sum\limits_{n = 1}^\infty {\left( {\frac{{{d_1}N}}{{{\alpha ^2}H+\dfrac{{{N^2}}}{H}}} - \frac{{H{d_1}}}{N}} \right)} \sin \left( {\frac{{Nz}}{H}} \right)} \Biggr){\text{,}}\\&-{s_{\text{f}}} \leqslant s \leqslant {s_{\text{f}}}. \end{split} $

对应的边界条件为

$ \begin{gathered} {N_{1|z= 0}} = 0,\; {P_{\text{b}}} = {k_{\text{b}}}{s_{\text{b}}} = - {E_{\text{p}}}{A_{\text{p}}}{\frac{{{\text{d}}{s_{\text{p}}}}}{{{\text{d}}z_{|z = l}}}}. \end{gathered} $

待定系数的表达式为

$ \begin{split} {C_1} =&\, {C_2} = \frac{{\dfrac{{{K_{\text{b}}}}}{{{E_{\text{p}}}{A_{\text{p}}}}} \left( {\dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{{{\alpha ^2}H}} + \displaystyle\sum\limits_{n = 1}^\infty {\left( {\frac{{{d_1}}}{{{\alpha ^2}+\dfrac{{{N^2}}}{{{H^2}}}}}} \right) \cos \left( {\dfrac{{Nl}}{H}} \right)} } \right)}}{{\dfrac{{{K_{\text{b}}}}}{{{E_{\text{p}}}{A_{\text{p}}}}}\left( {{{\text{e}}^{\alpha l}}+{{\text{e}}^{ - \alpha l}}} \right)+\alpha \left( {{{\text{e}}^{\alpha l}} - {{\text{e}}^{ - \alpha l}}} \right)}} - \\ &\frac{{\left( {\displaystyle\sum\limits_{n = 1}^\infty {\left( {\dfrac{{{d_1}N}}{{{\alpha ^2}H+\dfrac{{{N^2}}}{H}}} - \dfrac{{H{d_1}}}{N}} \right)\sin \left( {\dfrac{{Nl}}{H}} \right) - \dfrac{{{m_{\text{v}}}{p_{\text{c}}}l}}{H}} } \right)}}{{\dfrac{{{K_{\text{b}}}}}{{{E_{\text{p}}}{A_{\text{p}}}}}\left( {{{\text{e}}^{\alpha l}}+{{\text{e}}^{ - \alpha l}}} \right)+\alpha \left( {{{\text{e}}^{\alpha l}} - {{\text{e}}^{ - \alpha l}}} \right)}}. \end{split} $

2.2. 桩端附近桩侧土进入塑性

假定存在深度l2,使得该深度处对应的桩土相对位移s=sfl2则对应正摩阻力区桩土界面的弹塑性临界点,此时桩的受力如图4所示. 联立式(1)~(3),得到桩土相对位移表达式为

图 4

图 4   单桩受力分析图(桩端附近桩周土进入塑性)

Fig.4   Single pile force analysis diagram (plastic stage of soil adjacent to pile tip)


$ \begin{split}{s_2} =&\; {C_3}{{\text{e}}^{\alpha z}}+{C_4}{{\text{e}}^{ - \alpha z}} - \dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{{{\alpha ^2}H}} - \\ &\displaystyle\sum\limits_{n = 1}^\infty {\dfrac{{{d_1}}}{{{\alpha ^2}+\dfrac{{{N^2}}}{{{H^2}}}}}} \cos \left( {\frac{{Nz}}{H}} \right),\; -{s_{\text{f}}} \leqslant s \leqslant {s_{\text{f}}}\,; \\{s_3} = &\;\dfrac{{{m_{\text{v}}}{p_{\text{c}}}+{\alpha ^2}{s_{\text{f}}}H}}{{2H}}{z^2} - \\ &\displaystyle\sum\limits_{n = 1}^\infty {\dfrac{{{H^2}{d_1}}}{{{N^2}}}} \cos \left( {\dfrac{{Nz}}{H}} \right)+{D_1}z+{Q_1},\; s \geqslant {s_{\text{f}}}\,.\end{split} $

式中:C3C4D1Q1均为待定常数. 轴力表达式:

$ \begin{split} {N_2} =&\; - {E_{\text{p}}}{A_{\text{p}}} \times \\ & \left[ {{C_3}\alpha {{\text{e}}^{\alpha z}} - {C_4}\alpha {{\text{e}}^{ - \alpha z}} - \dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{H}z+} \right. \\ &\left. {\displaystyle\sum\limits_{n = 1}^\infty {\left( {\dfrac{{{d_1}N}}{{{\alpha ^2}H+\dfrac{{{N^2}}}{H}}} - \dfrac{{H{d_1}}}{N}} \right)} \sin \left( {\dfrac{{Nz}}{H}} \right)} \right]{\text{,}}\\& -{s_{\text{f}}} \leqslant s \leqslant {s_{\text{f}}}\,; \\ {N_3} =&\; - {E_{\text{p}}}{A_{\text{p}}}\left( {{\alpha ^2}{s_{\text{f}}}z+{D_1}} \right),\; s \geqslant {s_{\text{f}}}\,.\end{split} $

边界条件与式(8)相同,对应的连续性条件为

$ \begin{gathered} {s_{2|z = {l_2}}} = {s_{3|z = {l_2}}} = {s_{\text{f}}},\; {N_{2|{{z} = {l_2}}}} = {N_{3|{{z} = {l_2}}}}.\end{gathered} $

联立式(10)~(12),将C3C4D1Q1l2表示:

$ \begin{split} {C_3} = &\;{C_4} = \dfrac{{{s_{\text{f}}}+\dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{{{\alpha ^2}H}}+\dfrac{{{d_1}}}{{{d_1}^2+\dfrac{{{N^2}}}{{{H^2}}}}}\cos \left( {\dfrac{N}{H}{l_2}} \right)}}{{ {{{\text{e}}^{\alpha {l_2}}}+{{\text{e}}^{ - \alpha {l_2}}}} }}, \\ {D_1} = &\;\left( {\dfrac{{{d_1}N}}{{{\alpha ^2}H+\dfrac{{{N^2}}}{H}}} - \dfrac{{H{d_1}}}{N}} \right)\sin \left( {\dfrac{N}{H}{l_2}} \right) - \\ & \left( {\dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{H}+{\alpha ^2}{s_{\text{f}}}} \right){l_2}+{C_3}\alpha \left( {{{\text{e}}^{\alpha {l_2}}} - {{\text{e}}^{ - \alpha {l_2}}}} \right), \\ {Q_1} = &\;{s_{\text{f}}} - {D_1}{l_2} - \dfrac{{{m_{\text{v}}}{p_{\text{c}}} + {\alpha ^2}{s_{\text{f}}}H}}{{2H}}{l_2}^2 + \dfrac{{{H^2}}}{{{N^2}}}\cos \left( {\dfrac{N}{H}{l_2}} \right). \end{split} $

将式(13)代入桩端边界条件式(12),将式(13)转换为仅与l2相关的方程:

$ \begin{split} &- {E_{\text{p}}}{A_{\text{p}}}\left( {{\alpha ^2}{{\text{s}}_{\text{f}}}l+{D_1}} \right) - {\text{ }}{K_{\text{b}}}\left( {\frac{{{m_{\text{v}}}{p_{\text{c}}}+{\alpha ^2}{s_{\text{f}}}H}}{{2H}}{l^2} - } \right. \\ &\quad \left. {{\text{ }}\frac{{{H^2}}}{{{N^2}}}\cos \left( {\frac{{Nl}}{H}} \right)+{D_1}l+{Q_1}} \right) = 0. \end{split} $

借助Matlab软件求解式(13),即可得待定系数C3C4D1Q1的表达式.

2.3. 桩顶附近桩侧土进入塑性

假定存在深度l1,使得该深度处对应的桩土相对位移$s=-s_{\mathrm{f}} $. 同理,假定存在深度l2,使得该深度处对应的桩土相对位移$s=s_{\mathrm{f}} $. l1l2分别对应着负摩阻力和正摩阻力区桩土界面的弹塑性临界点,此时桩的受力如图5所示. 联立式(1)~(3),得到对应的桩土相对位移表达式为

图 5

图 5   单桩受力分析图(桩顶附近桩周土进入塑性)

Fig.5   Single pile force analysis diagram (plastic stage of soil adjacent to pile head)


$ \begin{split} {s_4} = &\;\dfrac{{{m_{\text{v}}}{p_{\text{c}}} - {\alpha ^2}{s_{\text{f}}}H}}{{2H}}{z^2} - \\& \displaystyle\sum\limits_{n = 1}^\infty {\dfrac{{{H^2}{d_1}}}{{{N^2}}}} \cos \left( {\dfrac{{Nz}}{H}} \right)+{D_2}z+{Q_2},\; s \leqslant - {s_{\text{f}}}; \\ {s_5} = &\;{C_5}{{\text{e}}^{\alpha z}}+{C_6}{{\text{e}}^{ - \alpha z}} - \dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{{{\alpha ^2}H}} - \\& \displaystyle\sum\limits_{n = 1}^\infty {\frac{{{d_1}}}{{{\alpha ^2}+\dfrac{{{N^2}}}{{{H^2}}}}}} \cos \left( {\dfrac{{Nz}}{H}} \right),\; -{s_{\text{f}}} \leqslant s \leqslant {s_{\text{f}}}; \\ {s_6} =&\; \dfrac{{{m_{\text{v}}}{p_{\text{c}}}+{\alpha ^2}{s_{\text{f}}}H}}{{2H}}{z^2} -\\& \displaystyle\sum\limits_{n = 1}^\infty {\dfrac{{{H^2}{d_1}}}{{{N^2}}}} \cos \left( {\dfrac{{Nz}}{H}} \right)+{D_3}z+{Q_3},\; s \geqslant {s_{\text{f}}}. \end{split} $

轴力表达式为

$ \begin{split} &\left. {\displaystyle\sum\limits_{n = 1}^\infty {\left( {\dfrac{{{d_1}N}}{{{\alpha ^2}H+\dfrac{{{N^2}}}{H}}} - \dfrac{{H{d_1}}}{N}} \right)} \sin \left( {\dfrac{{Nz}}{H}} \right)} \right){\text{,}}\\&-{s_{\text{f}}} \leqslant s \leqslant {s_{\text{f}}}; \\ {N_6} =&\; - {E_{\text{p}}}{A_{\text{p}}}\left( {{\alpha ^2}{s_{\text{f}}}z+{D_2}} \right),\; s \geqslant {s_{\text{f}}}. \end{split} $

其中C5C6D2D3Q2Q3均为待定常数. 边界条件与式(8)相同,对应的连续性条件为

$ \begin{split} &s_{4|{{z} = {l_1}}} = {s_{5|{{z} = {l_1}}}} = - {s_{\text{f}}},\;\; N_{4|{{z} = {l_1}}} = {N_{5|{{z} = {l_1}}}}; \\ &s_{5|{{z} = {l_2}}} = {s_{6|{{z} = {l_2}}}} = {s_{\text{f}}},\;\; N_{5|{{z} = {l_2}}} = {N_{6|{{z} = {l_2}}}}. \end{split} $

联立式(15)~(17),将C5C6D2D3Q2Q3l1l2表示:

$ \begin{split} {{C}_{5}}= &-\left( \alpha {{s}_{\text{f}}}-\dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{\alpha H}-\dfrac{\alpha {{d}_{1}}}{{{d}_{1}}^{2}+\dfrac{{{N}^{2}}}{{{H}^{2}}}}\cos \left( \dfrac{N}{H}{{l}_{1}} \right) \right)/ \\ & \left( 2\alpha {{e}^{\alpha {{l}_{1}}}} \right)-\left( \dfrac{{{d}_{1}}N}{{{\alpha }^{2}}H+\dfrac{{{N}^{2}}}{H}}-\dfrac{H{{d}_{1}}}{N} \right)\sin \left( \dfrac{N}{H}{{l}_{1}} \right)/ \\ & \left( 2\alpha {{e}^{\alpha {{l}_{1}}}} \right)+ \left( {{\alpha }^{2}}{{s}_{\text{f}}}-\dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{H} \right){{l}_{2}}/\left( 2\alpha {{e}^{\alpha {{l}_{1}}}} \right) , \\ {{C}_{6}}= & -\left( \alpha {{s}_{\text{f}}} - \dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{\alpha H} - \dfrac{\alpha {{d}_{1}}}{{{d}_{1}}^{2} + \dfrac{{{N}^{2}}}{{{H}^{2}}}}\cos \left( \dfrac{N}{H}{{l}_{1}} \right) \right)/ \\ & \left( 2\alpha {{e}^{-\alpha {{l}_{1}}}} \right)+ \left( \dfrac{{{d}_{1}}N}{{{\alpha }^{2}}H+\dfrac{{{N}^{2}}}{H}}-\dfrac{H{{d}_{1}}}{N} \right)\sin \left( \dfrac{N}{H}{{l}_{1}} \right)/ \\ & \left( 2\alpha {{e}^{-\alpha {{l}_{1}}}} \right)+ \left( {{\alpha }^{2}}{{s}_{\text{f}}}-\dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{H} \right){{l}_{2}}/\left( 2\alpha {{e}^{-\alpha {{l}_{1}}}} \right), \\ {D_2} = &\;0, \\ {D_3} = &\;\left( - {s_{\text{f}}}+\dfrac{{{m_{\text{v}}}{p_{\text{c}}}}}{{{\alpha ^2}H}}+\dfrac{{{d_1}}}{{{d_1}^2+\dfrac{{{N^2}}}{{{H^2}}}}}\cos \left( {\dfrac{N}{H}{l_1}} \right) -\right.\\& \left.{C_5}{{\text{e}}^{\alpha {l_1}}} - {C_6}{{\text{e}}^{ - \alpha {l_1}}}\right)\Biggr/\left( {{\dfrac{{{{\text{e}}^{\alpha {l_1}}}}}{{2\alpha {{\text{e}}^{\alpha {l_2}}}}} - \dfrac{{{{\text{e}}^{ - \alpha {l_1}}}}}{{2\alpha {{\text{e}}^{ - \alpha {l_2}}}}}}} \right)+\\& {C_3}\alpha \left( {{{\text{e}}^{\alpha {l_2}}} - {{\text{e}}^{ - \alpha {l_2}}}} \right), \\{Q_2} = &\;- {s_{\text{f}}} - \dfrac{{{m_{\text{v}}}{p_{\text{c}}} - {\alpha ^2}{s_{\text{f}}}H}}{{2H}}{l_1}^2 - \dfrac{{{H^2}}}{{{N^2}}}\cos \left( {\dfrac{N}{H}{l_1}} \right), \\ {Q_3} = &\;{s_{\text{f}}} - {D_3}{l_2} - \dfrac{{{m_{\text{v}}}{p_{\text{c}}}+{\alpha ^2}{s_{\text{f}}}H}}{{2H}}{l_2}^2 - \dfrac{{{H^2}}}{{{N^2}}}\cos \left( {\dfrac{N}{H}{l_2}} \right). \\[-6pt]\end{split}$

将式(18)代入桩端边界条件以及l1处连续性条件式(17),将式(18)转换为仅与l1l2相关的方程组:

$\begin{split} & \left( \dfrac{{{d}_{1}}N}{{{\alpha }^{2}}H+\dfrac{{{N}^{2}}}{H}}-\dfrac{Hd}{N} \right)\sin \left( \dfrac{N}{H}{{l}_{1}} \right)/\left( 2\alpha {{e}^{\alpha {{l}_{1}}}} \right)- \\ & \left( {{\alpha }^{2}}{{s}_{\text{f}}}-\dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{H} \right){{l}_{1}}/\left( 2\alpha {{e}^{\alpha {{l}_{1}}}} \right)- \\ & \left( \alpha {{s}_{\text{f}}}+\dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{\alpha H}+\dfrac{\alpha {{d}_{1}}}{{{d}_{1}}^{2}+\dfrac{{{N}^{2}}}{{{H}^{2}}}}\cos \left( \dfrac{N}{H}{{l}_{2}} \right) \right)/\left( 2\alpha {{e}^{\alpha {{l}_{2}}}} \right)+ \\ & \left( \dfrac{{{d}_{1}}N}{{{\alpha }^{2}}H+\dfrac{{{N}^{2}}}{H}}-\dfrac{Hd}{N} \right)\sin \left( \dfrac{N}{H}{{l}_{2}} \right)/\left( 2\alpha {{e}^{\alpha {{l}_{2}}}} \right)- \\ & \left( {{\alpha }^{2}}{{s}_{\text{f}}}-\dfrac{{{m}_{\text{v}}}{{p}_{\text{c}}}}{H} \right){{l}_{2}}/\left( 2\alpha {{e}^{\alpha {{l}_{2}}}} \right)-{{D}_{3}}/\left( 2\alpha {{e}^{\alpha {{l}_{2}}}} \right)=0, \\ &- {E_{\text{p}}}{A_{\text{p}}}\left( {{\alpha ^2}{{\text{s}}_{\text{f}}}l+{D_3}} \right) - {K_{\text{b}}}\left( {\dfrac{{{m_{\text{v}}}{p_{\text{c}}}+{\alpha ^2}{s_{\text{f}}}H}}{{2H}}{l^2} - }\right.\\ & \qquad\quad \left.{\dfrac{{{H^2}}}{{{N^2}}}\cos \left( {\dfrac{{Nl}}{H}} \right)+{D_3}l+{Q_3}} \right) = 0. \\[-6pt]\end{split} $

该方程组难以获得显式解,为此借助Matlab软件求得半解析解.

3. 解的验证

3.1. 解析退化验证

将基桩的基本参数退化为软土,将桩侧-土剪切刚度系数k取趋向于无穷大,此时α也趋向于无穷大,代入式(4)、式(7),得到“虚土桩”的桩土相对位移为0,此时可退化成式(1)中弱透水层底部降承压水时土体沉降.

3.2. 有限元数值验证

以文献[23]、[24]为背景构建算例,基本计算参数为弱透水层厚度H =40 m、压缩模量ES=1.6 MPa、泊松比υ =0.35、桩身弹性模量Ep =30 GPa、桩长l=30 m、直径d=0.6 m,假定桩顶荷载为0、桩土界限位移sf=0.002 m[25-27]. 承压水降深hc=5 m. 采用Plaxis 3D软件,针对该算例建立有限元数值分析模型,满足第1章中的基本假设,且当土体采用线弹性模型时,Plaxis假定压缩模量为定值. 采用Embeded桩约束考虑桩-土之间理想弹塑性的相互作用,土体与桩身参数与温州金都大厦的地层和桩基静载试验数据[23-24]相同. 承压含水层大面积瞬时降水通过改变弱透水层底部水头边界进行控制. 模型的有限元网格划分如图6所示,进行瞬时降承压水下桩土相互作用的过程模拟. 如图7所示为理论解和有限元数值解得到的桩顶沉降sph随固结时间t的变化,由图可知,理论解与数值解吻合较好,验证了本研究理论解的合理性.

图 6

图 6   弱透水层与单桩相互作用有限元模型

Fig.6   Finite element model of interaction between aquitard and single pile


图 7

图 7   桩顶沉降随固结时间的变化

Fig.7   Variation of pile head settlement with consolidation time


4. 参数影响分析

以文献[23]、[24]的地层和桩基静载试验数据为背景构建算例,进一步探讨固结时间、桩长、桩径以及降水深度等参数变化对抽降承压水引发弱透水层中基桩受力变形的影响.

4.1. 固结时间

将算例参数代入式(1)~ (19),得到抽降承压水引起的弱透水层固结过程中桩侧-土接触面的相对位移sz(桩、土沉降差)和桩身摩阻力τz. 如图8所示为固结时间t对桩土关系的影响. 图8(a)中,固结前期,桩侧均为负摩阻力,且负摩阻力不断增长,随着固结的进行,桩端附近出现正摩阻力并率先达到极限且逐渐向上扩展,随后桩顶负摩阻力区达到极限并逐渐向下扩展. 这与桩顶加载情况桩长深度范围内只存在正摩阻力[28-29]的分布不同,正、负摩阻力沿深度的发展进程也与地表堆载情况下“上部先于下部达到极限摩阻力的过程”的认识 [30-31]有明显区别,其原因主要是承压水降水引起的土体固结进程与地表堆载引发的土体固结进程不同. 图8(b)中,在固结前期,桩侧均为负摩阻力,轴力Nz随着深度和时间不断增大,随着固结的进行,桩侧出现正摩阻力,此时轴力出现拐点,即中性点,且中性点随着时间发展不断上移并趋于稳定.

图 8

图 8   固结时间对摩阻力和轴力的影响

Fig.8   Influence of consolidation time on skin friction and axial force


图9所示为不同时刻土体的竖向应变随深度的分布. 可以看出,土层底部的应变明显大于上部,且土体应变沿深度呈非线性分布,随着时间的增长,固结完成后最终发展成线性分布,说明承压水降水引起的土体压缩是自下及上发展的,上部土层的压缩滞后于下部土层. 通过荷载传递法对桩侧-土界面假定存在如图3~5所示的3种情况和发展变化过程,正是基于降承压水引起的弱透水层固结压缩发展规律的认识提出的.

图 9

图 9   固结时间对土层竖向应变的影响

Fig.9   Influence of consolidation time on vertical strain of soil layer


4.2. 桩径

桩的长细比是桩基础设计中须着重考虑的参数,当桩长不变时,长细比的变化即代表桩径的变化. 假定桩长不变,l=30 m,分别取d=0.6 、0.8、1.2 m. 如图10所示为桩径对降承压水引起桩土相互作用的影响. 桩径越大,摩阻力发展越快,桩端附近桩土界面塑性段越小,轴力越大. 原因是桩径越大,桩的端承性质越强,桩端刺入变形越小,桩土相对位移越小,因而桩端附近界面塑性端越短,轴力越大. 此外,由轴力的拐点可知,中性点深度随桩径增大下移. 如图11所示,桩顶沉降随着桩径的增大而减小,因而工程中适当控制桩径有助于缓解承压水降水引起的桩身沉降过大问题.

图 10

图 10   桩径对摩阻力和轴力的影响

Fig.10   Influence of pile diameter on skin friction and axial force


图 11

图 11   不同桩径下桩顶沉降随固结时间的变化

Fig.11   Variation of pile head settlement with consolidation time for different pile diameters


4.3. 桩长

采用桩长与弱透水层厚度之比(l/H)将桩长退化成无量纲参数,如图12所示为桩长对降承压水引起桩土相互作用的影响. 可以发现,固结前期桩侧均为负摩阻力,桩长越短,负摩阻力越大,且桩端附近的负摩阻力发展更快,但是当桩长足够大时,摩阻力沿深度的分布会出现反弯点. 原因是固结前期仅在桩端以下土层发生固结,桩侧均为负摩阻力;对于桩长越长的桩,桩侧土越先发生固结,因而桩端处桩土作用关系会发生变化,减缓了负摩阻力作用,出现反弯点. 随着固结的进行,桩侧-土接触面作用更充分,则桩长越长,摩阻力的发展越快. 由图12(b)可知,桩长越长,轴力越大,中性点深度随桩长增加有相对下移的趋势. 在固结时间由10 d延长至50 d的过程中,桩端附近轴力的减小也反映了由于桩侧土固结介入引起的桩土作用关系的变化.

图 12

图 12   桩长对摩阻力和轴力的影响

Fig.12   Influence of pile length on skin friction and axial force


桩长对桩顶沉降的影响如图13所示,桩长越大,桩顶沉降速率越慢,最终沉降越小. 可见桩长过短会使固结前期桩土相对位移更大,且由于承压水降水是自下而上固结的,桩长越短,桩端以下的桩土共同沉降越大,桩身沉降越大. 因此,在承压水大范围降水的工况下桩未打穿弱透水层时,桩长的增加对减小桩身沉降效果显著.

图 13

图 13   不同桩长下桩顶沉降随固结时间的变化

Fig.13   Variation of pile head settlement with consolidation time for different pile lengths


4.4. 承压水降深

图14所示为承压水降深对桩土相互作用的影响. 当降水深度等比例增加时,桩身沉降增量略小于承压水降深比例增量,即相比降水深度的变化,桩身沉降趋势略缓. 此外,降水深度越大,桩身沉降越大,桩身轴力越大.

图 14

图 14   承压水降深对桩基沉降和轴力的影响

Fig.14   Influence of drawdown depth on settlement and axial force


5. 结 语

基于大面积抽降承压水引起弱透水层沉降的解答,考虑理想弹塑性的桩侧和线弹性的桩端与土的相互作用关系,通过荷载传递法得到瞬时降承压水作为主要诱因时,未打穿自由单桩的桩侧摩阻力、桩身位移和轴力随固结进程的半解析解. 1) 抽降承压水时弱透水层底部边界水头发生变化,越流作用引起有效应力变化使弱透水层土体产生固结沉降,诱发桩的受力变形. 2) 当以承压水降水为主要诱因时,摩阻力的变化与桩基工程传统的“上部先于下部达到极限摩阻的过程”的认识不同,上部土层的压缩滞后于下部土层;桩身下部桩土相对位移较大,将率先达到极限摩阻. 3) 桩径越大,桩顶沉降越小但桩身轴力越大;承压水降深越大,桩身轴力和桩顶沉降越大;桩长越长,桩身轴力越大,中性点深度随桩长增加有相对下移的趋势,增加桩长可显著减小未打穿弱透水层的单桩的沉降. 上述关于降承压水引起软黏土中自由单桩受力变形分析未考虑桩顶既有荷载的影响. 下一步,将引入桩顶荷载,讨论分步加载对软黏土中自由单桩受力变形的影响.

参考文献

骆冠勇, 潘泓, 曹洪, 等

承压水减压引起的沉降分析

[J]. 岩土力学, 2004, 25 (Suppl.2): 196- 200

DOI:10.3969/j.issn.1000-7598.2004.z2.040      [本文引用: 1]

LUO Guanyong, PAN Hong, CAO Hong, et al

Analysis of settlements caused by decompression of confined water

[J]. Rock and Soil Mechanics, 2004, 25 (Suppl.2): 196- 200

DOI:10.3969/j.issn.1000-7598.2004.z2.040      [本文引用: 1]

LIU J C, LEI G G, MEI G X

One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater

[J]. Journal of Central South University, 2012, 19 (1): 282- 286

DOI:10.1007/s11771-012-1002-9      [本文引用: 1]

徐进, 王少伟, 杨伟涛

水位变化下可压缩土层的黏弹性耦合变形分析

[J]. 岩土力学, 2020, 41 (3): 1065- 1073

XU Jin, WANG Shaowei, YANG Weitao

Analysis of coupled viscoelastic deformation of soil layer with compressible constituent due to groundwater level variation

[J]. Rock and Soil Mechanics, 2020, 41 (3): 1065- 1073

徐进, 杨伟涛, 陈征, 等

水位下降诱发含水层–弱透水层1维黏弹性固结分析

[J]. 工程科学与技术, 2021, 53 (5): 89- 97

XU Jin, YANG Weitao, CHEN Zheng, et al

One-dimensional viscoelastic consolidation analysis of aquifer–aquitard due to drawdown of water level

[J]. Advanced Engineering Sciences, 2021, 53 (5): 89- 97

谢康和, 陶立为, 王玉林, 等

越流系统中弱透水层的一维固结解及分析

[J]. 沈阳工业大学学报, 2012, 34 (5): 581- 585

[本文引用: 1]

XIE Kanghe, TAO Liwei, WANG Yulin, et al

One-dimensional consolidation solution and analysis for aquitard in leakage system

[J]. Journal of Shenyang University of Technology, 2012, 34 (5): 581- 585

[本文引用: 1]

YAO J F, XIE K H, HUANG D Z. Analytical solution for one-dimensional consolidation of soil layer induced by time-dependent groundwater drawdown [J]. Applied Mechanics and Materials , 2013, 405/406/407/408: 83–88.

吴浩, 谢康和, 黄大中

第二类越流系统中结构性弱透水土层一维固结解析解

[J]. 岩土工程学报, 2014, 36 (9): 1688- 1695

DOI:10.11779/CJGE201409016     

WU Hao, XIE Kanghe, HUANG Dazhong

Analytical solution for one-dimensional consolidation of structured aquitard soils in second kind of leakage system

[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (9): 1688- 1695

DOI:10.11779/CJGE201409016     

张玮鹏, 谢康和, 吕文晓, 等

抽水引起的有起始比降饱和土固结解析解

[J]. 中南大学学报: 自然科学版, 2016, 47 (3): 875- 881

[本文引用: 1]

ZHANG Weipeng, XIE Kanghe, LÜ Wenxiao, et al

Analytical solution to one-dimensional consolidation of saturated soil with threshold gradient induced by groundwater pumping

[J]. Journal of Central South University: Science and Technology, 2016, 47 (3): 875- 881

[本文引用: 1]

CHEN R P, ZHOU W H, CHEN Y M

Influences of soil consolidation and pile load on the development of negative skin friction of a pile

[J]. Computers and Geotechnics, 2009, 36 (8): 1265- 1271

DOI:10.1016/j.compgeo.2009.05.011      [本文引用: 1]

孔纲强, 陈力恺, 刘汉龙

考虑土体非线性固结沉降的复合地基桩侧负摩阻力研究

[J]. 中国公路学报, 2013, 26 (3): 37- 43

DOI:10.3969/j.issn.1001-7372.2013.03.002     

KONG Gangqiang, CHEN Likai, LIU Hanlong

Study on negative skin friction of pile in composite foundation considering nonlinear consolidation of soil

[J]. China Journal of Highway and Transport, 2013, 26 (3): 37- 43

DOI:10.3969/j.issn.1001-7372.2013.03.002     

赵明华, 胡倩, 杨超炜, 等

考虑地基土非线性固结的桩侧负摩阻力计算方法研究

[J]. 岩土工程学报, 2016, 38 (8): 1417- 1424

DOI:10.11779/CJGE201608008      [本文引用: 1]

ZHAO Minghua, HU Qian, YANG Chaowei, et al

Negative skin friction of piles considering nonlinear consolidation of soil

[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (8): 1417- 1424

DOI:10.11779/CJGE201608008      [本文引用: 1]

LIU J, GAO H, LIU H

Finite element analyses of negative skin friction on a single pile

[J]. Acta Geotechnica, 2012, 7 (3): 239- 252

DOI:10.1007/s11440-012-0163-x      [本文引用: 1]

YAO W, LIU Y, CHEN J

Characteristics of negative skin friction for superlong piles under surcharge loading

[J]. International Journal of Geomechanics, 2012, 12 (2): 90- 97

DOI:10.1061/(ASCE)GM.1943-5622.0000167      [本文引用: 1]

贾煜, 宋福贵, 王炳龙, 等

基于改进荷载传递法计算降水引起的基桩沉降

[J]. 岩土力学, 2015, 36 (1): 68- 74

[本文引用: 1]

JIA Yu, SONG Fugui, WANG Binglong, et al

Modified load transfer method for calculation of foundation pile settlement due to dewatering

[J]. Rock and Soil Mechanics, 2015, 36 (1): 68- 74

[本文引用: 1]

刘御刚. 抽降水对高速铁路桥梁桩基的影响分析[D]. 长沙: 中南大学, 2014: 1–97.

[本文引用: 1]

LIU Yugang. Analysis on influence imposed by exploiting groundwater on bridges pile foundation of high-speed railway [D]. Changsha : Central South University, 2014: 1–97.

[本文引用: 1]

江留慧. 抽降水下既有建筑物基桩承载力性状分析[D]. 镇江: 江苏大学, 2020: 1–113.

[本文引用: 2]

JIANG Liuhui. Analysis of bearing capacity behavior of existing building foundation pile by pumping water [D]. Zhenjiang: Jiangsu University, 2020: 1–113.

[本文引用: 2]

刘红军, 上官士青, 朴春德, 等

基于数学规划算法的单桩沉降计算分析研究

[J]. 岩土工程学报, 2012, 34 (5): 868- 873

[本文引用: 1]

LIU Hongjun, SHANGGUAN Shiqing, PIAO Chunde, et al

Calculation and analysis of single pile settlement based on mathematical programming algorithm

[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (5): 868- 873

[本文引用: 1]

谢新宇, 王忠瑾, 王金昌, 等

考虑桩土非线性的超长桩沉降计算方法

[J]. 中南大学学报: 自然科学版, 2013, 44 (11): 4664- 4671

[本文引用: 1]

XIE Xinyu, WANG Zhongjin, WANG Jinchang, et al

Calculation method for settlement of super-long pile considering nonlinearity of pile and soils

[J]. Journal of Central South University: Science and Technology, 2013, 44 (11): 4664- 4671

[本文引用: 1]

TERZAGHI K. 1925. Principles of soil mechanics. IV. Settlement and consolidation of clay. [J]. Engineering News-Record , 1925, 95: 874–878.

[本文引用: 1]

TAO L W, XIE K H, HUANG D Z. Analytical solution for one-dimensional consolidation of soft soil induced by water head difference [C]// Proceedings of the International Conference on E-Product E-Service and E-Entertainment . [S.l.]: IEEE, 2010: 1–4.

[本文引用: 2]

欧孝夺, 白露, 吕政凡, 等

自平衡试桩Q-s曲线理论解析方法研究

[J]. 铁道科学与工程学报, 2022, 19 (2): 399- 408

[本文引用: 1]

OU Xiaoduo, BAI Lu, LÜ Zhengfan, et al

Research on theoretical analytical method of Q-s curves of self-balancing test piles

[J]. Journal of Railway Science and Engineering, 2022, 19 (2): 399- 408

[本文引用: 1]

李连祥, 李先军, 成晓阳, 等

考虑圆孔扩张理论的支盘桩荷载传递法

[J]. 中国公路学报, 2018, 31 (8): 20- 29

DOI:10.3969/j.issn.1001-7372.2018.08.002      [本文引用: 1]

LI Lianxiang, LI Xianjun, CHENG Xiaoyang, et al

Load transfer method for squeezed and branch piles considering cavity expansion theory

[J]. China Journal of Highway and Transport, 2018, 31 (8): 20- 29

DOI:10.3969/j.issn.1001-7372.2018.08.002      [本文引用: 1]

李术才, 陈红宾, 张晓, 等

粉质黏土隧道超前支护效应试验研究

[J]. 中南大学学报: 自然科学版, 2019, 50 (4): 946- 956

[本文引用: 3]

LI Shucai, CHEN Hongbin, ZHANG Xiao, et al

Experimental study on advanced support effect in silty clay tunnel

[J]. Journal of Central South University: Science and Technology, 2019, 50 (4): 946- 956

[本文引用: 3]

陈岳林. 温州软土地基桩基变形性状研究[D]. 杭州: 浙江大学, 2005: 1–102.

[本文引用: 3]

CHEN Yuelin. Settlement behavior of pile foundation in Wenzhou soft ground [D]. Hangzhou: Zhejiang University, 2005: 1–102.

[本文引用: 3]

王宗琴, 张云鹏, 田乙, 等

考虑固结的新近吹填场地桩侧负摩阻力分布特性

[J]. 哈尔滨工业大学学报, 2022, 54 (8): 108- 116

DOI:10.11918/202104053      [本文引用: 1]

WANG Zongqin, ZHANG Yunpeng, TIAN Yi, et al

Distribution characteristics of negative skin friction on piles installed at dredger fill sites considering consolidation effect

[J]. Journal of Harbin Institute of Technology, 2022, 54 (8): 108- 116

DOI:10.11918/202104053      [本文引用: 1]

叶观宝, 郑文强, 张振

大面积填土场地中摩擦型桩负摩阻力分布特性研究

[J]. 岩土力学, 2019, 40 (Suppl.1): 440- 448

YE Guanbao, ZHENG Wenqiang, ZHANG Zhen

Investigation on distribution of negative friction of frictional piles in large filling sites

[J]. Rock and Soil Mechanics, 2019, 40 (Suppl.1): 440- 448

吴爽爽, 胡新丽, 章涵, 等

嵌岩桩负摩阻力现场试验与计算方法研究

[J]. 岩土力学, 2019, 40 (9): 3610- 3617

[本文引用: 1]

WU Shuangshuang, HU Xinli, ZHANG Han, et al

Field test and calculation method of negative skin friction of rock-socketed piles

[J]. Rock and Soil Mechanics, 2019, 40 (9): 3610- 3617

[本文引用: 1]

贺志军, 雷皓程, 夏张琦, 等

多层软土地基中单桩沉降与内力位移分析

[J]. 岩土力学, 2020, 41 (2): 655- 666

[本文引用: 1]

HE Zhijun, LEI Haocheng, XIA Zhangqi, et al

Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation

[J]. Rock and Soil Mechanics, 2020, 41 (2): 655- 666

[本文引用: 1]

王奎华, 吕述晖, 吴文兵, 等

层状地基中基于虚土桩模型的单桩沉降计算方法

[J]. 工程力学, 2013, 30 (7): 75- 83

DOI:10.6052/j.issn.1000-4750.2012.03.0171      [本文引用: 1]

WANG Kuihua, LÜ Shuhui, WU Wenbing, et al

A new calculation method for the settlement of single pile based on virtual soil-pile model in layered soils

[J]. Engineering Mechanics, 2013, 30 (7): 75- 83

DOI:10.6052/j.issn.1000-4750.2012.03.0171      [本文引用: 1]

陈仁朋, 周万欢, 曹卫平, 等

改进的桩土界面荷载传递双曲线模型及其在单桩负摩阻力时间效应研究中的应用

[J]. 岩土工程学报, 2007, 29 (6): 824- 830

DOI:10.3321/j.issn:1000-4548.2007.06.006      [本文引用: 1]

CHEN Renpeng, ZHOU Wanhuan, CAO Weiping, et al

Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect

[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (6): 824- 830

DOI:10.3321/j.issn:1000-4548.2007.06.006      [本文引用: 1]

曹卫平

桩土界面荷载传递双曲线模型的改进及其应用

[J]. 岩石力学与工程学报, 2009, 28 (1): 144- 151

DOI:10.3321/j.issn:1000-6915.2009.01.019      [本文引用: 1]

CAO Weiping

An improved load transfer hyperbolic model for pile-soil interface and its application

[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (1): 144- 151

DOI:10.3321/j.issn:1000-6915.2009.01.019      [本文引用: 1]

/