电动汽车充电平台充电桩数量和价格协同优化
Collaborative optimization of charging pile quantity and price for electric vehicle charging platform
收稿日期: 2022-10-20
基金资助: |
|
Received: 2022-10-20
Fund supported: | 国家自然科学基金资助项目(72171210);浙江省自然科学基金资助项目(LZ23E080002) |
作者简介 About authors
陈喜群(1986—),男,长聘教授,博士,从事交通运输管理和智能交通系统研究.orcid.org/0000-0001-8285-084X.E-mail:
基于随机效用最大化理论,提出电动汽车充电平台用户端的用户行为决策模型. 在满足车辆服务需求和充电站约束条件下,分别推导企业利润最大化和社会福利最大化目标函数下的卡罗需-库恩-塔克(KKT)条件、最优数量和最优价格,通过数值实验分析参数敏感性. 最优化结果表明,合适的充电价格和充电桩数量决定用户前往不同区域充电的意愿,充电价格和充电桩数量在多区域多时段都有最优解. 模型结果表明:在空间上,价格和数量随距离增加呈现递减趋势,且递减幅度增大;在时间上,高峰期的定价高于低谷期的定价,低谷期的区域间定价差异大于高峰期的区域间定价差异. 对比不同目标,社会福利最大化目标下的最优充电价格普遍低于利润最大化目标下的价格,社会福利最大化下的最优充电桩数量多于利润最大化下的充电桩数量. 敏感性参数分析结果表明,电池容量、单位电池容量的充电时长、多项Logit(MNL)模型中的敏感度均与目标结果呈现负相关,与感知效用呈正相关.
关键词:
A driver behavior decision model on the user side of electric vehicle (EV) charging platform was proposed based on the random utility maximization theory. Under the requirements of vehicle service and the constraints of charging stations, the Karush-Kuhn-Tucker (KKT) conditions, optimal quantity and charging price of different functions were derived for the objective functions of platform profit maximization and social welfare maximization, respectively. The parameter sensitivity was analyzed through the numerical experiments. The optimization results show that the appropriate charging price and the number of charging piles determine EV drivers’ willingness to different regions, the number of charging piles and the charging price have optimal solutions in multiple regions and periods. The model results show that, in spatial terms, the price and the quantity decrease with the distance increasing; in temporal terms, the pricing during the peak period is higher than that during the low period, and inter-regional pricing differences during the low period are more significant than those during the peak periods. Compared with different goals, the optimal charging price in social welfare maximization state is lower than that in profit maximization state, and the optimal number of charging piles to achieve maximum social welfare is more than that to achieve maximum profit. Results of sensitivity parameter analysis showed that, the battery capacity, the charging duration for unit battery capacity, and the sensitivity factor of multinomial Logit (MNL) model were negatively correlated with the target results, while positively correlated with users’ perceived utility.
Keywords:
本文引用格式
陈喜群, 钱忆薇, 莫栋.
CHEN Xi-qun, QIAN Yi-wei, MO Dong.
随着社会经济发展和城市化进程加快,资源环境问题日益突出[1]. 电动汽车(electric vehicle, EV)作为交通运输领域清洁能源技术的代表,具有能量密度高、环境污染小的优点,EV保有量持续增加,使得充电服务需求迅速扩大[2-3]. 充电基础设施规划不尽合理;充电市场面临充电站投建不精准、布局不合理,投建后利用率低、管理不到位、投资回报率不高等实际问题. 例如,集中于主城区的日益增长的充电需求与城市郊区充电桩的高闲置率,构成城市充电设施供需不平衡的主要矛盾. 可见,充电设施布局和定价策略的研究不仅关乎充电站经济效益和充电设施资源配置,也与经济社会可持续发展息息相关. 本研究建立EV用户效用最大化模型,结合多项Logit(multinominal Logit model, MNL)模型分析平台利润最大化以及社会福利最大化,推导最优定价以及充电设施数量满足的卡罗需−库恩−塔克(Karush-Kuhn-Tucker, KKT)条件,分析相关参数敏感性. 研究旨在在满足用户服务需求和充电站实际约束的前提下,为推动形成适度超前、布局均衡、智能高效的充电基础设施体系提供参考.
1. 充电站规划及充电定价研究现状
在充电负荷特性方面,已有研究考虑移动特性的停车生成率模型,包括车型差异和电池特性分析. Aujla等[8]针对充电桩用户和充电桩运营商构建斯塔克伯格博弈模型,分析如充电时长、用电量、电池特性和电动汽车类型等一系列充电负荷特性参数的敏感性,从不同角度制定了共享定价方案.
在充电设施或加油站的数量优化和站点规划方面,已有研究集中于站点的选址布局优化. 高建树等[9]运用遗传算法对充电桩的选址进行优化,基于电动汽车运行规律,将行车距离和充电时长最小化. 魏秀岭等[10]基于Voronoi生成方法和粒子加权算法,将站点服务范围与站点参数相关联,对充电站布局和充电桩类型进行探究. Capar等[11]在截流选址模型基础上,分别设计给定加油站数量的流续航选址模型和考虑车辆行程和路线的广义流续航选址模型. Chen等[12]研究高速公路场景下的快速充电优化方法,利用多输出充电策略提高充电桩利用率. 宋建[13]研究电网和电动汽车的博弈体系,提出基于博弈论的电动汽车优化充电策略. 一方面,上述研究主要从用户侧出发,探讨如何更好地满足补能需求,如最小化出行成本、降低充电或加油的等待时间,关注运营商效益等优化目标,但对充电站本身属性(如充电站规模、充电设施数量、充电站电价等)的研究较少,未调控区域间的充电需求.
针对充电平台供给和用户需求的时空供需协调问题,本研究建立EV用户充电效用及行为决策模型,分别考虑多区域间利润最大化和社会福利最大化目标函数,分析主要参数的敏感性,在优化模型基础上,提出具有区域差异化的充电站布局规划,形成充电桩投放数量和时空差异化定价的协同优化策略.
2. EV用户充电效用及行为决策模型
假设存在营利性充电设施平台,为
式中:
为了贴合实际情况,考虑充电排队情形,在此基础上,引入MNL模型刻画用户前往不同区域的充电选择行为,
式中:
式中:
将平台充电桩数量和充电价格进行协同优化以实现利润最大化,在不同时段设定不同充电桩的充电价格和充电桩数量以降低总成本. 模型中的平台综合运营成本
3. 充电桩数量和充电价格协同优化模型
3.1. 平台利润最大化模型
充电平台成本主要包括充电桩建设成本及电力成本,平台运营的主要利润来自于EV充电用户,充电价格和充电意愿决定充电需求量. 平台综合运营收入
3.2. 社会福利最大化模型
调节平台在不同时段的充电价格、服务价格以及在该区域内设置合理的充电桩数量,让用户获得较高的充电意愿,兼顾用户满意度和平台合理收益,在双方互利共赢基础上,实现社会福利
式中:
4. 案例分析
以杭州市的3个行政区为例(
表 1 2017—2021年全国公共税收情况
Tab.1
年份 | CT | |
个人所得税 | 企业所得税 | |
2017 | 11 966.37 | 32 117.29 |
2018 | 13 871.97 | 35 323.71 |
2019 | 10 388.53 | 37 303.77 |
2020 | 11 568.26 | 36 425.81 |
2021 | 13 992.68 | 42 042.38 |
表 2 杭州市3个行政区的日充电需求量
Tab.2
行政区 | | |
上城区 | 8 000 | 4 500 |
西湖区 | 6 000 | 3 100 |
余杭区 | 4 000 | 1 800 |
图 1
图 1 杭州市3个行政区的充电桩分布及日充电需求量分布
Fig.1 Distribution of charging piles and average daily demand for charging in three districts in Hangzhou
表 3 区域间的通行成本
Tab.3
行政区 | Lij | ||
上城区 | 西湖区 | 余杭区 | |
上城区 | 0 | 15 | 30 |
西湖区 | 15 | 0 | 42 |
余杭区 | 30 | 42 | 0 |
4.1. 多区域协同调价优化结果
4.1.1. 多区域协同调价决策变量及利润的趋势变化
如图2所示,根据多区域协同调价数据模型,分析价格P、充电桩数量Ni和利润的趋势关系。当P=0~4元、Ni=0~1 000时,多区域协同调价决策变量的利润在高峰期、低谷期都呈现凸性,可以求得最优解,本研究通过KKT条件求解利润最大化目标下的最优价格和充电桩数量.
图 2
图 2 多区域协同调价决策变量及利润的趋势变化
Fig.2 Multi-regional coordinated price adjustment decision and profit trend change
4.1.2. 多区域协同调价决策变量及社会福利的趋势变化
如图3所示,根据多区域协同调价数据模型分析价格、充电桩数量和社会福利的趋势关系。当P=0~4元、Ni=100~1 000时,多区域协同调价决策变量的社会福利在高峰期、低谷期都呈现凸性,可以求得最优解,本研究通过KKT条件求解社会福利最大化目标下的最优价格和充电桩数量.
图 3
图 3 多区域协同调价决策变量及社会福利的趋势变化
Fig.3 Multi-regional coordinated price adjustment decision and social welfare trend change
4.1.3. 利润最大化多区域协同最优定价方案
表 4 利润最大化下最优价格和充电桩数量
Tab.4
行政区 | | Ni | | ||
高峰期 | 低谷期 | 高峰期 | 低谷期 | ||
上城区 | 1.67 | 1.35 | 288 | 51 | 85 |
西湖区 | 1.62 | 1.32 | 278 | 58 | 106 |
余杭区 | 1.57 | 1.28 | 183 | 50 | 92 |
表 5 利润最大化下的日充电需求量
Tab.5
行政区域 | | 行政区域 | | |||
高峰期 | 低谷期 | 高峰期 | 低谷期 | |||
上城区−上城区 | 1374 | 1194 | 余杭区−西湖区 | 40 | 28 | |
西湖区−上城区 | 232 | 184 | 上城区−余杭区 | 27 | 22 | |
余杭区−上城区 | 12 | 8 | 西湖区−余杭区 | 64 | 48 | |
上城区−西湖区 | 348 | 292 | 余杭区−余杭区 | 820 | 551 | |
西湖区−西湖区 | 1112 | 856 | —— | —— | —— |
4.1.4. 社会福利最大化多区域协同最优定价方案
根据设定的参数及协同优化模型求解社会福利最大化模型的最优解,如表6、7所示. 在利润最大化情况下,上城区、西湖区、余杭区的高峰期最优价格分别为1.67、1.62、1.57元,低谷期最优价格分别为1.35、1.32、1.28元,多区域最大化利润为235 618.45元;在社会福利最大化情况下,高峰期最优价格分别为1.62、1.56、1.51元,低谷期最优价格分别为1.28、1.23、1.20元;多区域最大化社会福利为287 292.40元. 可以看出,3个区域均表现出社会福利最大化价格略低于利润最大化价格,原因在于平台设置较低定价以增加用户满意度,平台为实现社会福利最大化舍弃了一部分利润,用于增加用户满意度,具有现实含义. 无论是利润最大化条件还是社会福利最大化条件,3个区域均表现出低谷期价格差异比高峰期更为明显,原因是当处在充电高峰期时,位于中心区域的用户在本区域本难以找到充电桩,增加了向附近区域充电的动机;在低谷期时间段时,用户在本区域内找到合适充电桩的概率更大,只有在邻区价格较低时才能吸引用户. 3个不同区域不同时段的价格差异类似,可见在2个目标函数下时段对不同区域的影响是相似的.
表 6 社会福利最大化下最优价格和充电桩数量
Tab.6
行政区 | | Ni | | ||
高峰期 | 低谷期 | 高峰期 | 低谷期 | ||
上城区 | 1.62 | 1.28 | 309 | 52 | 86 |
西湖区 | 1.56 | 1.23 | 300 | 59 | 108 |
余杭区 | 1.51 | 1.20 | 195 | 51 | 94 |
表 7 社会福利最大化下的日充电需求量
Tab.7
行政区域 | | 行政区域 | | |||
高峰期 | 低谷期 | 高峰期 | 低谷期 | |||
上城区−上城区 | 1490 | 1308 | 余杭区−西湖区 | 44 | 31 | |
西湖区−上城区 | 250 | 201 | 上城区−余杭区 | 29 | 25 | |
余杭区−上城区 | 13 | 9 | 西湖区−余杭区 | 69 | 54 | |
上城区−西湖区 | 381 | 328 | 余杭区−余杭区 | 889 | 613 | |
西湖区−西湖区 | 1216 | 952 | —— | —— | —— |
对比社会福利最大化情形与利润最大化情形的充电桩数量设置,上城区、西湖区、余杭区高峰期的最优充电桩数量分别为288、278、183个,在社会福利最大化条件下同期价格为309、300、195个. 3个区域均表现出社会福利最大化情形的数量略高于利润最大化情形,原因在于平台设置更多的充电桩数量以减少排队时间. 无论高峰期还是低谷期,上城区、西湖区2个区间的最优充电桩数量差值为10个左右,西湖、余杭2个区间的最有充电桩数量相差接近100个,可见充电站位置与中心区域距离的影响因素对充电桩数量的影响呈现放大趋势,原因是当充电距离增加到达一定数值时,用户选择远区域的意愿会大大降低,需求量也会随之下降,再低廉的价格也无法吸引用户跨越远距离充电,因此只需设置较少充电桩就能满足郊区需求.
以上优化结果表明,在平台利润最大化以及社会福利最大化目标下,充电价格和充电桩数量均呈现从市区到郊区呈递减趋势,价格递减幅度平稳,充电桩数量递减幅度随距离增加而增加. 原因是充电平台需要在较远区域适当降价来吸引用户,以减轻市中心负担,更充分利用较远区域的充电设施资源,符合实际应用中的充电供需关系.
用户效用结果显示,就区域内而言,郊区的用户效用比市区高,说明郊区用户满意度更高;就区域间而言,前往郊区的充电意愿相对较低,距离越远用户意愿越低,在实际应用中极少出现用户远距离充电的情况. 空余充电桩数量的结果显示,中间区域的空余充电桩数量相对较多. 原因在于市中心和郊区建桩量已经过优化,得到了更有效利用,但中间区域在满足高峰需求的情况下更易出现低谷期充电桩剩余,无法兼顾需求和成本,在后续研究中可以深入探究如何优化低谷期空桩量,不造成资源浪费.
4.2. 多区域协调调价情形下的敏感性分析
如图4所示,分析多区域价格优化条件的EV电池容量和充电敏感度因子的敏感性,揭示对平台利润和社会福利的影响效应. 当电池容量增大时,利润和社会福利均下降,可见单纯增大电池容量参数,与平台收益和社会福利无明显正相关. 当
图 4
图 4 电池容量和充电敏感度因子的敏感性分析曲线
Fig.4 Sensitivity analysis curves for battery capacity and charging sensitivity factor
如图5所示,通过对MNL模型敏感度
图 5
图 5 用户感知效用和MNL模型敏感度的敏感性分析曲线
Fig.5 Sensitivity analysis curves for users perceived utility and sensitivity factor of MNL model
5. 结 语
本研究基于充电平台经营策略,建立充电效用及行为决策模型,对比利润、社会福利最大化2种目标下的最优结果,进行参数敏感性分析. 协同优化结果表明,当价格区间为0~4元,建桩数量为0~1 000时,平台利润及社会福利均存在唯一极大值点. 在空间上,郊区的充电价格低于中心市区价格,以实现对市区用户的引流、减轻中心市区充电桩的服务压力;充电桩数量从市区到郊区都呈现递减趋势,以适应需求在空间上的不均匀分布. 在时间上,高峰期定价高于低谷期;相较于利润最大化,社会福利最大化状态下的高峰期与低谷期价格差异更为显著. 社会福利最优价格普遍低于利润最大化情形,后者的充电桩数量多于前者,各区域、各时段实现的需求量均更高. 敏感性参数分析结果表明,充电敏感性因子、电池容量、MNL模型中的敏感度与目标结果呈现负相关,用户充满电所获得的感知效用与目标结果呈正相关. 本研究模型通过趋势分析和求得数值最优解,结合参数敏感性分析,为电动汽车充电平台定价及布设方案提供参考. 本研究提出的电动汽车充电途径只适用于无储能场景的充电平台,未来研究可以考虑更为复杂的充放电场景,提出更具前瞻性的电动汽车平台优化策略.
参考文献
基于风险价值的电动汽车充电桩效益风险评估
[J].
Benefit and risk assessment for electric vehicle charging pile based on value at risk
[J].
Finding the optimal location for public charging stations–a GIS-based MILP approach
[J].DOI:10.1016/j.egypro.2019.01.071 [本文引用: 1]
Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: an evolutionary game model in a small-world network
[J].DOI:10.1016/j.jclepro.2020.120753 [本文引用: 1]
基于静态非合作博弈的电动汽车充电电价影响因素量化分析
[J].
Quantitative analysis of influence factors about EV’s charging electricity price based on the static non-cooperative game theory
[J].
基于积分制和分时电价的电动汽车混合型精准需求响应策略
[J].
Hybrid targeted demand response strategy of electric vehicles based on integral system and time-of-use electricity price
[J].
集群电动汽车充电行为的深度强化学习优化方法
[J].
Deep reinforcement learning based optimization for charging of aggregated electric vehicles
[J].
Optimal charging strategy for electric vehicles in residential charging station under dynamic spike pricing policy
[J].DOI:10.1016/j.scs.2020.102474 [本文引用: 1]
Energy trading with dynamic pricing for electric vehicles in a smart city environment
[J].DOI:10.1016/j.jpdc.2018.06.010 [本文引用: 1]
基于遗传算法的机场充电桩布局选址研究
[J].
Study on site selection of airport charging pile based on genetic algorithm
[J].
基于粒子群算法加权的 Voronoi 图电动汽车充网络优化规划
[J].
Network voronoi diagram heuristic-based particle swarm continuous spatial optimization modeling
[J].
An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations
[J].DOI:10.1016/j.ejor.2012.11.033 [本文引用: 1]
Study of a new quick-charging strategy for electric vehicles in highway charging stations
[J].DOI:10.3390/en9090744 [本文引用: 1]
/
〈 |
|
〉 |
