浙江大学学报(工学版), 2022, 56(5): 920-929 doi: 10.3785/j.issn.1008-973X.2022.05.009

土木工程

基于铰接正交异性板法的铰缝损伤评估理论

倪晓静,, 邢渊, 徐荣桥,

1. 浙江大学 建筑工程学院,浙江 杭州 310058

2. 华汇工程设计集团股份有限公司,浙江 绍兴 312000

Damage evaluation of hinged joints by method of orthotropic plates with hinged joints

NI Xiao-jing,, XING Yuan, XU Rong-qiao,

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. Huahui Engineering Design Group Co. Ltd., Shaoxing 312000, China

通讯作者: 徐荣桥,男,教授. orcid.org/0000-0002-0005-9737. E-mail: xurongqiao@zju.edu.cn

收稿日期: 2021-06-15  

基金资助: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01143);国家自然科学基金资助项目(51478422)

Received: 2021-06-15  

Fund supported: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01143);国家自然科学基金资助项目(51478422)

作者简介 About authors

倪晓静(1983—),女,博士,从事桥梁工程研究.orcid.org/0000-0002-5248-8875.E-mail:nxj54837@126.com , E-mail:nxj54837@126.com

摘要

为了定量评估空心板梁桥铰缝损伤程度,为后续维修加固提供决策依据,将单块空心板比拟成正交异性板,视空心板桥上部为铰接正交异性板结构,引入铰缝剪力与铰缝两侧挠度差关系式作为板间传力方程,建立二维可考虑不同位置、不同长度及不同程度铰缝损伤影响的铰缝剪力计算模型(HJSFM),并导出荷载作用下铰缝处剪力Fourier级数形式的解析解.在此基础上,以设计荷载和加大荷载下铰缝的损伤演化为依据,提出轻、中、重3级铰缝损伤程度评级方案(HJDRS),形成铰缝损伤评估模型(HJDAM). 以有限元模拟结果对本模型铰缝剪力计算值的正确性进行验证,并将本铰缝损伤评估模型应用于一座铰缝损伤的空心板梁桥. 研究表明,剪力计算模型得到的铰缝剪力的精度满足工程需要,并且该损伤评估模型可行.

关键词: 空心板梁桥 ; 铰接正交异性板法 ; 铰缝病害 ; 损伤评估 ; 维修决策

Abstract

A two-dimensional shear force calculation model for hinged joint (HJSFM) taking damage position, cracking length and degree of hinged joints into account was established, in order to quantitatively evaluate the damage degree of hinged joint in the hollow slab girder bridge and provide decision-making basis for subsequent maintenance and reinforcement. In this model, single hollow slab was compared to an orthotropic plate, and the bridge was formed by multiple orthotropic plates laterally connected through hinged joints. The relationship between shear force of the hinged joint and relative displacement occurring across the hinged joint was introduced as the force transfer equation between orthotropic plates. The analytical solution for HJSFM under loads was derived based on Fourier series expansion. Based on the evolution of damage state of hinged joints under design load and overload, a three-level damage rating scheme of light, medium and heavy for hinged joints (HJDRS) was put forward. HJSFM and HJDRS composed the core of damage assessment model for hinged joint (HJDAM). Finally, a finite element model was established to verify accuracy of the shear force calculated by the HJSFM, and the HJDAM was applied to a hollow slab girder bridge with damaged hinged joints. Results show that the accuracy of shear force obtained by the HJSFM can meet the engineering needs and the HJDAM is feasible.

Keywords: hollow slab girder bridge ; method of orthotropic plate with hinged joints ; hinged joint disease ; damage assessment ; maintenance decision

PDF (1477KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

倪晓静, 邢渊, 徐荣桥. 基于铰接正交异性板法的铰缝损伤评估理论. 浙江大学学报(工学版)[J], 2022, 56(5): 920-929 doi:10.3785/j.issn.1008-973X.2022.05.009

NI Xiao-jing, XING Yuan, XU Rong-qiao. Damage evaluation of hinged joints by method of orthotropic plates with hinged joints. Journal of Zhejiang University(Engineering Science)[J], 2022, 56(5): 920-929 doi:10.3785/j.issn.1008-973X.2022.05.009

空心板梁桥因造价低、构造简单、施工方便等原因被广泛应用于中小跨径桥梁,而铰缝破坏是该类桥型的主要病害之一[1-2]. 铰缝损伤后空心板间传力能力减弱或失效,会导致单板受力过大,造成梁体损坏,引发安全事故. 因此,对铰缝损伤程度进行合理评估,是该类桥梁运维阶段的重要工作.

目前国内普遍认为铰缝损伤基于3大原因:构造本身、施工工艺和车辆超限. 在北美地区,因空心板铰缝断面较小,填筑材料难密实[3],温差也是铰缝损伤的重要原因[4-5].

目前常用的铰缝损伤定性评估主要基于目测或桥梁检测部门给出的检测报告. 定量分析则按基于静载还是动载分析分为2类. 在静载分析方面,研究者提出荷载横向分布影响线或线斜率[6-7]、铰缝相对位移[8-9]、铰缝刚度/柔度或刚度比[7,10]、铰缝传力能力[10]、铰缝协同工作系数[11]等指标来进行损伤定位和损伤评价. 在动载分析方面,研究者提出铰缝刚度[12-14]、加速度幅值或幅值比[12,15-16]指标进行损伤定位和评价. 有限元模拟研究表明,若铰缝损伤较小或损伤位置不在铰缝中部,静载下损伤时的荷载横向分布与完好时的区别不明显[7,17],损伤定位困难. 上述静载和动载分析方法对损伤的定位和评估均基于当下的整条铰缝,即定位只能得到损伤铰缝的编号,不能定位铰缝损伤沿桥跨方向的具体位置和损伤长度,也不能对损伤的进一步发展状态进行预测,而从实际桥梁检测、维修设计到施工往往有较大时间间隔,对损伤发展的预测也是一项重要内容. 另外,有限元模拟需要有正确的初始状态才能分析损伤铰缝在各种荷载下的状态以及损伤的发展. 在采用实体有限元模拟铰缝时须给出开裂长度、开裂位置和开裂高度信息,而实际的开裂高度不可测;在梁格法中,采用虚拟横梁模拟铰缝时须给出铰缝刚度,虽然通过静力和动力分析可以得到铰缝刚度,但这个铰缝刚度是平均铰缝刚度,意味着整条铰缝具有同等程度的损伤,与现实不符. 一般的桥梁检测报告除了给出桥梁的基本信息外,还会对铰缝状态进行描述,包括具体的开裂位置、开裂长度之类的参数. 如何利用这些已知量,建立损伤铰缝评价模型并对铰缝损伤发展状态进行预测是本研究的目的.

比拟正交异性板法是桥梁设计的常用方法,存在解析解,多用于由多根纵向主梁和横向横隔梁组成的梁桥. 当梁肋间距与桥跨结构的宽度和长度相比较小时,单宽纵向截面抗弯和抗扭惯矩以主梁截面的抗弯和抗扭惯矩在主梁间距内平摊得到,单宽横向截面的抗弯和抗扭惯矩以横隔梁截面的抗弯和抗扭惯矩在横隔梁中心距内平摊得到[18]. 比拟正交异性板法以单梁为基础计算截面特性,因此可以直接将单梁比拟为正交异性板,将空心板梁桥视为由一列并排放置的正交异性板在交界面处铰接而成. 目前铰缝完好的空心板桥常采用铰接板法设计,基于3大假定:1)铰缝只传递竖向剪力,不传递弯矩;2)板上荷载、铰缝剪力和板的位移沿跨径方向为正弦函数分布;3)两相邻梁板在铰缝处的挠度连续. 但现场试验表明,无论铰缝是否损伤,剪力作用下两梁板在铰缝处均存在相对位移[8-9],当铰缝损伤时该相对位移不可忽略. 因此部分研究者引入跨中铰缝相对位移[19-21]或整条铰缝平均刚度[10]修正常用的铰接板梁法正则方程求解铰缝损伤情况下铰缝剪力或荷载横向分布系数. 这些方法均将整条铰缝看作一个整体,无法体现铰缝损伤的具体位置,无法对铰缝损伤的后续发展做出预测.

本研究将单片空心板梁比拟为正交异性板,假定板间只传递剪力,引入铰缝段剪力-挠度差关系作为板间联系方程,形成二维铰缝剪力计算模型,可以计算得到荷载作用下铰缝任意位置处剪力. 在此基础上,基于铰缝的损伤演化,实现铰缝损伤程度的定量分析和评级,为后续维修加固决策提供依据.

1. 铰缝剪力计算模型

1.1. 正交各向异性板

设有如图1所示的长为a,宽为b的正交异性板,在矩形区域ABCD内受均布压力q0的作用. 该矩形区域中心O′坐标为( $ \xi $, $ \eta $)xy方向的作用长度分别为uv. ABCD边所在直线将板分成3个区域,分别为Ω1Ω2Ω3. 板的x=0和x=a边界条件为简支,y=0和y=b边界条件为挠度给定和弯矩为零. 正交异性板的挠度w满足如下方程:

图 1

图 1   单片正交异性板上的荷载及其边界条件

Fig.1   Load and boundary conditions for single orthotropic plate


$ {D_x}\frac{{{\partial ^4}w}}{{\partial {x^4}}}{\text{ + }}\left( {{\text{2}}{D_1} + {D_{xy}} + {D_{yx}}} \right)\frac{{{\partial ^4}w}}{{\partial {x^2}\partial {y^2}}}{\text{ + }}{D_y}\frac{{{\partial ^4}w}}{{\partial {y^4}}} = q . $

式中:DxDyD1DxyDyx为正交异性板的抗弯和抗扭刚度,具体计算公式见文献[18];q为作用于板上的横向分布荷载. 将均布荷载q0展开成Fourier级数,则q可以表示为

$ q = \left\{\begin{array}{*{20}{l}} {0},&{{y \in {\varOmega _1} \cup {\varOmega _3}}};\\ { {\displaystyle \sum\limits_{m = 1}^\infty {\dfrac{{4{q_0}}}{{m{\text{π}} }}\sin \;\left( {{a_m}\xi } \right)\sin \;\left( {\dfrac{{{a_m}u}}{2}} \right)\sin\; \left( {{a_m}x} \right)} }},&{{y \in {\varOmega _2}}}. \end{array}\right. $

式中: ${a_m} = {{m{\text{π}} } \mathord{\left/ {\vphantom {{m{\text{π}} } a}} \right. } a}$.

x=0和x=a的边界为简支条件,y=0和y=b的边界为只传递剪力的铰缝,因此

$ \left. \begin{gathered} {\left. {{M_x}} \right|_{x = 0}} = 0,\;{\left. w \right|_{x = 0}} = 0 ,\hfill \\ {\left. {{M_x}} \right|_{x = a}} = 0,\;{\left. w \right|_{x = a}} = 0 ,\hfill \\ {\left. {{M_y}} \right|_{y = 0}} = 0,\;{\left. w \right|_{y = 0}} = \sum\limits_{i = 1}^\infty {{w_{y0m}}\sin\; \left( {{a_m}x}\right)} , \hfill \\ {\left. {{M_y}} \right|_{y = b}} = 0,\;{\left. w \right|_{y = b}} = \sum\limits_{i = 1}^\infty {{w_{ybm}}\sin \;\left( {{a_m}x} \right)} . \hfill \\ \end{gathered} \right\} $

式中:MxMyxy方向的弯矩;wy0mwybm为挠度在y=0和y=b处的傅里叶展开系数. 对于正交异性板,内力与挠度的关系为

$ \left. \begin{gathered} {M_x} = - {D_x}\frac{{{\partial ^2}w}}{{\partial {x^2}}} - {D_1}\frac{{{\partial ^2}w}}{{\partial {y^2}}} ,\; {M_y} = - {D_y}\frac{{{\partial ^2}w}}{{\partial {y^2}}} - {D_1}\frac{{{\partial ^2}w}}{{\partial {x^2}}} ,\hfill \\ {M_{xy}} = {D_{xy}}\frac{{{\partial ^2}w}}{{\partial x\partial y}} ,\; {M_{yx}} = - {D_{yx}}\frac{{{\partial ^2}w}}{{\partial x\partial y}}{\text{ }} ,\hfill \\ {Q_y} = \frac{{\partial {M_y}}}{{\partial y}} - \frac{{\partial {M_{xy}}}}{{\partial x}},\; {V_y} = {Q_y} + \frac{{\partial {M_{yx}}}}{{\partial x}}{\text{ }} .\hfill \\ \end{gathered} \right\} $

式中:MxyMyx为扭矩,Qyy方向板内剪力,Vyy边界处广义剪力[22].

对于一般空心板的材料和截面特性,有 $\left( 2{D_1} + $ $ {D_{xy}} + {D_{yx}} \right)^2 - 4{D_x}{D_y} < 0$,故以Levy解[22]为基础,式(1)在荷载(式(2))和边界条件(式(3))下的解可以表示为

$ w = \left\{ {\begin{array}{*{20}{l}} {{w^{\left( 1 \right)}}},&{y \in {{\varOmega}_1}} ; \\ {{w^{\left( 2 \right)}}},& {y \in {\varOmega _2}} ; \\ {{w^{\left( 3 \right)}}},&{y \in {\varOmega _3}} . \end{array}} \right. $

其中,

$ \left. \begin{gathered} {w^{\left( 1 \right)}}{\text{ = }}\sum\limits_{m = 1}^\infty \left( {{A_{1m}}{F_{1m}} + {B_1}_m{F_{2m}} + {C_{1m}}{F_{3m}} + {D_{1m}}{F_{4m}}} \right)\times \\[-2pt] \;\;\;\;\;\;\;\sin\; \left( {{a_m}x} \right) , \hfill \\ {w^{\left( 2 \right)}}{\text{ = }}\sum\limits_{m = 1}^\infty \left( {A_{2m}}{F_{1m}} + {B_2}_m{F_{2m}} + {C_{2m}}{F_{3m}} + {D_{2m}}{F_{4m}}{\text{ + }} \right.\hfill \\ \;\;\;\;\;\;\;\left. {q_m} \right)\sin \;\left( {{a_m}x} \right), \hfill \\[-2pt] {w^{\left( 3 \right)}}{\text{ = }}\sum\limits_{m = 1}^\infty \left( {{A_{3m}}{F_{1m}} + {B_3}_m{F_{2m}} + {C_{3m}}{F_{3m}} + {D_{3m}}{F_{4m}}} \right)\times \\[-2pt] \;\;\;\;\;\;\; \sin \;\left( {{a_m}x} \right) .\hfill \end{gathered} \right\} $

$ \left. \begin{split} {F_{1m}} =\;& \cosh \;\left( {{\alpha _m}y} \right)\cos\; \left( {{\beta _m}y} \right) ,\hfill \\ {F_{2m}} = \;&\sinh\; \left( {{\alpha _m}y} \right)\sin \;\left( {{\beta _m}y} \right), \hfill \\ {F_{3m}} =\;& \cosh\; \left( {{\alpha _m}y} \right)\sin \;\left( {{\beta _m}y} \right) ,\hfill \\ {F_{4m}} = \;&\sinh \;\left( {{\alpha _m}y} \right)\cos \;\left( {{\beta _m}y} \right) ,\hfill \\ {\alpha _m} =\;& {a_m}{\left[ {2{D_y}/\left( {\sqrt {{D_x}{D_y}} + \left( {2{D_1} + {D_{xy}} + {D_{yx}}} \right)/2} \right)} \right]^{ - 1/2}} \hfill ,\\ {\beta _m} =\;& {a_m}{\left[ {2{D_y}/\left( {\sqrt {{D_x}{D_y}} - \left( {2{D_1} + {D_{xy}} + {D_{yx}}} \right)/2} \right)} \right]^{ - 1/2}} ,\hfill \\ {q_m} =\;& \frac{{4{a^4}{q_0}}}{{{D_x}{m^5}{{\text{π}} ^5}}}\sin \;\left( {{a_m}\xi } \right)\sin \;\left( {{a_m}u/2} \right) . \\[-12pt] \end{split} \right\}$

式中:A1m~D3m为待定常数,可以由内力和位移的连续性条件得到,最终可以表示为qmw0mwbm的线性组合,具体表达式见附录.

$ {V_{y0}} = {\left. {{V_y}} \right|_{y = 0}} $$ {V_{yb}} = {\left. {{V_y}} \right|_{y = b}} $,则将式(5)、(6)代入式(4)的 $ {V_y} $,可以得到

$ \left. \begin{gathered} {V_{y0}} = \sum\limits_{m = 1}^\infty {\left( {{C_{1m}}{F_{5m}} + {D_{1m}}{F_{6m}}} \right)\sin\; \left( {{a_m}x} \right)} , \hfill \\ {V_{yb}} = \sum\limits_{m = 1}^\infty \left( {{A_{3m}}{F_{7m}} + {B_{3m}}{F_{8m}} + {C_{3m}}{F_{9m}} + {D_{3m}}{F_{10m}}}\right)\times \\ \;\;\;\;\;\;\;\sin \; \left( {{a_m}x} \right). \hfill \\ \end{gathered} \right\} $

式中:

$\left. \begin{split} \;&{F_{5m}} = {\beta _m}\left[ { - {D_y}\left( {3{\alpha _m}^2 - {\beta _m}^2} \right) + \left( {{D_1} + {D_{xy}} + {D_{yx}}} \right){a_m}^2} \right] \hfill ,\\ \;& {F_{6m}} = {\alpha _m}\left[ { - {D_y}\left( {{\alpha _m}^2 - 3{\beta _m}^2} \right) + \left( {{D_1} + {D_{xy}} + {D_{yx}}} \right){a_m}^2} \right] ,\hfill \\ \;& {F_{7m}} = {F_{6m}}{\left. {{F_{4m}}} \right|_{y = b}} - {F_{5m}}{\left. {{F_{3m}}} \right|_{y = b}} ,\hfill \\ \;& {F_{8m}} ={F_{6m}}{\left. {{F_{3m}}} \right|_{y = b}} + {F_{5m}}{\left. {{F_{4m}}} \right|_{y = b}} ,\hfill \\ \;& {F_{9m}} = {F_{6m}}{\left. {{F_{2m}}} \right|_{y = b}} + {F_{5m}}{\left. {{F_{1m}}} \right|_{y = b}} ,\hfill \\ \;& {F_{10m}} = {F_{6m}}{\left. {{F_{1m}}} \right|_{y = b}} - {F_{5m}}{\left. {{F_{2m}}} \right|_{y = b}} .\\ \end{split} \right\}$

同时,若y边界为自由边界,则边界条件为

$ {V_y} = 0 . $

如果单板受到多个矩形均布荷载的作用,可以将其视为单板受单个矩形均布荷载作用的多次线性叠加.但有一点须注意,在叠加过程中,y边界挠度只能有一次取给定挠度,其余均须取0.

1.2. 空心板间铰缝的传力特性

根据空心板间只传递剪力的假定,引入铰缝段剪力与挠度差关系V=V(∆w)作为板间联系条件. 当铰缝完好时,整条铰缝处处具有相同的剪力-挠度差关系;当铰缝损伤时,铰缝各处的剪力-挠度差关系不再相同,为此将铰缝分成多个小段,假设每段内具有相同的剪力-挠度差关系.

国内外有不少研究者对不同类型铰缝的抗剪性能进行试验研究,但重点一般在抗剪强度,只有少数研究者给出了剪力-挠度差曲线[23-25]. 考虑到国内铰缝材料一般为混凝土且铰缝破坏往往发生在空心板梁与铰缝结合面,属于新老混凝土结合面抗剪范畴,可以参考新老混凝土结合面的抗剪试验成果[26-28]. 综合以上试验成果,将单向位移加载下的铰缝剪力-挠度差关系根据是否在结合面设置抗剪钢筋简化为2种情况,如图2所示. 对于未设置抗剪钢筋的铰缝,可以采用双折线近似(见图2(a)),折线顶点对应开裂荷载Vc或破坏荷载Vu;对于设置抗剪钢筋的铰缝,可以采用四折线近似(见图2(b)),2个折线顶点分别对应开裂荷载Vc和破坏荷载Vu. 具体的开裂荷载、破坏荷载及线段斜率由试验确定.

图 2

图 2   铰缝剪力-挠度差关系曲线

Fig.2   Shear force-relative displacement curves for hinged joint


对应铰缝含抗剪钢筋的情况,将实际桥梁铰缝损伤分为3个阶段:第1阶段为完好阶段,铰缝表观无损伤;第2阶段为开裂阶段,这时可以观察到铰缝底部有裂缝,但上部桥面板对应位置无损伤;第3阶段为失效阶段,此时裂缝上下贯通. 结合图2(b),并考虑卸载时的残余位移,剪力-挠度差关系表达式如下.

1)完好阶段:

$ V = {K_{\text{c}}}\Delta {w_{\text{c}}}; \; {0 \leqslant \Delta w \leqslant \Delta {w_{\text{c}}}} . $

2)开裂阶段:

$ V = \left\{ {\begin{array}{*{20}{l}} 0,&{{0 \leqslant \Delta w \leqslant \Delta {w_{\text{p}}}} } ;\\ {{K_{\text{p}}}\left( {\Delta w - \Delta {w_{\text{p}}}} \right)},&{{\Delta {w_{\text{p}}} < \Delta w \leqslant \Delta {w_{\text{u}}}} } . \end{array}} \right. $

3)失效阶段:

$ V = 0;\;{\Delta w \geqslant 0} . $

式中:Kc为铰缝开裂前刚度,Kp为铰缝开裂后刚度,∆wc为开裂前可以达到的最大挠度差,∆wu为开裂后但失效前能达到的最大挠度差,∆wp为卸载时的残余滑移量. 若∆wp相对于∆wu为小量,则在简化计算时可以忽略,开裂阶段也可以表示为

$ V = {K_{\text{p}}}\Delta w; \;{0 \leqslant \Delta w \leqslant \Delta {w_{\text{u}}}} . $

$ {V_{\text{c}}} = {K_{\text{c}}}\Delta {w_{\text{c}}} $为开裂荷载, $ {V_{\text{u}}} = {K_{\text{p}}}\left( {\Delta {w_{\text{u}}} - \Delta {w_{\text{p}}}} \right) $为破坏荷载.

1.3. 铰缝状态更新

铰缝段不同状态对应不同的表达式,因此在每次计算后须对铰缝段状态进行确认. 设第i条铰缝第j铰缝段的初始损伤状态为 $ {P_0}^{\left( {i,j} \right)} $,并以值0、1、2分别对应完好、开裂、失效3种状态.计算后得到该处铰缝段剪力为 ${{\bar V_y}{{_0}^{\left( {i + 1,j} \right)}}}$${{\bar V_y}{{_b}^{\left( {i,j} \right)}}}$,下文以 ${{\bar V_y}^{\left( {i,j} \right)}}$指代. 将 ${{\bar V_y}^{\left( {i,j} \right)}}$与铰缝开裂荷载 $ {V_{\text{c}}} $、破坏荷载 $ {V_{\text{u}}} $作比较,确定一轮计算后的铰缝新状态 $ {P_{\text{n}}}^{\left( {i,j} \right)} $

其中,Vtol为容许误差.

1.4. 计算流程

铰缝剪力计算模型主要由剪力计算模块和状态更新模块构成,具体计算流程如图3所示. 剪力计算模块由板间剪力方程(式(4)中Vy)、铰缝传力特性(式(11) ~ (13)或式(11)、(13)、(14))和自由边边界条件(式(10))组成,用于计算铰缝剪力. 状态更新模块则根据剪力计算模块数值实现铰缝状态更新. 在状态更新后,还须对所有铰缝段的更新状态 $ {P_{\text{n}}}^{\left( {i,j} \right)} $与原状态 $ {P_0}^{\left( {i,j} \right)} $进行比较,若两者不等,将 $ {P_{\text{n}}}^{\left( {i,j} \right)} $赋予 $ {P_0}^{\left( {i,j} \right)} $重新返回剪力计算模块进行计算,直至两者相等.

图 3

图 3   铰缝剪力计算流程图

Fig.3   Flow chart for shear force of hinged joint


2. 损伤评估模型

2.1. 损伤演化

根据《公路桥涵设计通用规范》(JTG D60—2015)[29]布置车道,在车道范围内尽可能以靠近损伤铰缝为原则布置车辆荷载且所有车辆荷载布置在铰缝同一侧,以便在铰缝处达到最大剪力. 对于不能将荷载布置在铰缝同一侧的情况,也应将荷载尽量偏置在损伤铰缝一侧. 荷载可以多车道布置,但应考虑多车道折减系数[29].

空心板梁桥一般为8~20 m,取3辆长15 m前后间距0.5 m的规范车[29]作为车辆荷载(下文以车队指代),以保证在车队运行过程中,始终有较大的荷载作用在桥上. 规范车主要技术指标参考桥涵设计通用规范[29],如表1图4所示.

表 1   车辆荷载主要技术指标

Tab.1  Main technical indexes of vehicle load

项目 单位 取值
车辆重力标准值 kN 550
前轮重力标准值 kN 30
中轮重力标准值 kN 2×120
后轮重力标准值 kN 2×140
轮距 m 1.8
前轮着地宽度及长度 m 0.3×0.2
中、后轮着地宽度及长度 m 0.6×0.2
轴距 m 3.0+1.4+7.0+1.4

新窗口打开| 下载CSV


图 4

图 4   车辆荷载示意图

Fig.4   Illustration of vehicle load


在计算时令车队多次运行于桥梁,以运行前、后铰缝损伤状态不再扩大为终止条件. 已知铰缝段初始损伤状态和在车队作用下最后损伤状态,若两者相同,则认为在该荷载下损伤不扩大;反之则损伤扩大.

2.2. 损伤评级建议

以铰缝既有损伤在现有荷载及加大荷载下的后续演化为依据,提出铰缝段损伤程度判断标准:

1)既有损伤在2种荷载下均不扩大,定为轻;

2)既有损伤仅在加大荷载下扩大,定为中;

3)既有损伤在现有荷载下扩大,定为重.

现有荷载对应桥梁的设计荷载. 超载或其他引起铰缝损伤的因素,通过荷载加大系数考虑. 当评级为轻时,可以只进行耐久性修复;当评级为中时,须在加固前检测是否存在损伤加大情况,然后再实施加固;当评级为重时,须立即采取加固措施,以免损伤进一步扩大.

3. 算 例

3.1. 铰缝剪力值验证

3.1.1. 计算模型

空心板梁桥跨径20 m,由6块板组成,每板宽1 m,桥上作用单个规范车荷载,如图5所示. 为了便于将本研究计算结果与有限元进行比较,不考虑钢筋影响,只进行弹性计算,并将空心板和铰缝截面简化为规则截面,截面尺寸如图6所示,空心板和铰缝计算参数如表2所示. 根据材料力学,铰缝刚度K可以由公式 $K = {Eh}/ $ $ {[2(1 + \nu )B]}$计算,其中E为弹性模量, $ \nu $为泊松比,B为铰缝宽度,h为铰缝高度. 考虑10 cm桥面板对荷载的扩散作用,将车轮着地面积由0.3 m×0.2 m变为0.5 m×0.4 m,由0.6 m×0.2 m变为0.8 m×0.4 m.

图 5

图 5   空心板桥上车辆荷载布置示意图

Fig.5   Illustration of vehicle load arrangement on hollow slab girder bridge


图 6

图 6   空心板和铰缝截面尺寸示意图

Fig.6   Illustration of cross-section of hollow slab and hinged joint


表 2   空心板和铰缝计算参数

Tab.2  Calculation parameters of hollow slab and hinged joint

部位 D1/(N·m) Dx/(N·m) Dy/(N·m) Dxy/(N·m) Dyx/(N·m) a/m b/m E/(N·m−2) ν Kc/(N·m−2)
空心板 2.14×108 1.07×109 1.07×109 7.46×108 2.05×108 20.0 1.0 3.25×1011 0.2
铰缝 3.25×1011 0.2 2.57×1011

新窗口打开| 下载CSV


有限元软件采用Abaqus2018,计算模型如图7所示. 正面网格尺度为1~5 cm,侧面网格尺度为10 cm,铰缝沿整个跨径分成200段. 空心板和铰缝接触面设置为无滑移,剪力下的滑移量由铰缝在剪力作用下两侧的位移差表示.

图 7

图 7   空心板桥铰缝剪力计算有限元模型示意图

Fig.7   Illustration of finite element model for calculating shear force at hinged joints of hollow slab bridge


3.1.2. 计算结果

本研究解析公式采用无穷级数形式,因此首先验证其收敛性. 如图8所示为铰缝1对应车轴F~J位置处的剪力Vy随傅里叶展开项数m的变化,F~J的具体x坐标区间分别为[16.2,16.6]、[13.2,13.6]、[11.8,12.2]、[4.8,5.2]、[3.4,3.8] m. 由图8可知,当m>50时,计算结果逐渐收敛,为了确保结果具有足够的精度,建议m取大值.

图 8

图 8   F~J处剪力随傅里叶展开项数的变化

Fig.8   Variation of shear force with number of Fourier expansion terms at F~J


本研究方法m=200下计算得到的铰缝1的剪力分布与有限元计算得到剪力分布的对比如图9所示. F~J处的剪力Vy表3所示. 表中,Vmax为极值,Er为误差. 由图9表3可知,本模型计算得到的铰缝1剪力分布与有限元计算得到的数值基本一致,且F~J点最大误差小于10%.

图 9

图 9   铰缝1剪力的有限元结果和本研究计算结果的对比

Fig.9   Comparison of shear force at hinged joint 1 resulted from finite element method and proposed shear calculation model


表 3   铰缝1剪力值的有限元和本研究计算结果

Tab.3  Shear force at hinged joint 1 resulted from finite element method and proposed shear calculation model

方法 J I H G F
Vmax/(kN·m−1) Er/% Vmax/(kN·m−1) Er/% Vmax/(kN·m−1) Er/% Vmax/(kN·m−1) Er/% Vmax/(kN·m−1) Er/%
有限元模型 −25.0 0.0 −23.7 0.0 −21.8 0.0 −20.9 0.0 −6.3 0.0
本研究方法(m=200) −25.8 3.2 −26.0 9.7 −22.7 4.1 −22.7 8.6 −6.7 6.3

新窗口打开| 下载CSV


3.2. 铰缝损伤判定

考虑含铰缝损伤的跨径20 m由6块空心板组成的实际空心板梁桥,具体截面如图10所示. 铰缝3在9.5~10.5 m处底部开裂,其余无损伤. 对该铰缝的损伤程度进行评估.

图 10

图 10   空心板梁桥横断面示意图

Fig.10   Illustration of cross section of hollow slab girder bridge


由于铰缝3存在损伤,基于第2章车队荷载布置原则,同时考虑10 cm铺装对荷载的扩散,将最近的车轴布置在距离铰缝0.4 m处. 结构重要性系数取1.0,车辆荷载效应作用系数取1.8,特殊荷载扩大效应系数取1.2.

对该桥铰缝在有及无桥面板情况下的抗剪性能进行试验,具体数据如表4所示. 由于开裂前和开裂后的线性关系仅是近似,取KcKpVc为试验值,不考虑Vp,取Vu约为Vc的1/2,∆wc∆wp由式(11)、(12)确定.

表 4   铰缝计算参数

Tab.4  Calculation parameters of hinged joint

参数 数值 参数 数值
Kc/(N∙m−2) 3.75×109 ∆wu/mm 0.5
Kp/( N∙m−2) 1.00×108 Vc/(N∙m−1) 1.1×105
∆wc/mm 0.0293 Vu/( N∙m−1) 5.0×104

新窗口打开| 下载CSV


经计算,在设计荷载作用下,铰缝3的开裂状态在车队荷载下不扩大. 且当车队前端位于x=23.4 m时,铰缝3达到的最大剪力为108.1 kN/m.

在扩大荷载作用下,车队第1次在桥上通过时计算得到的铰缝损伤区域随车队行进的变化如图11所示.图中,Px为车队前端位置,n为在该位置处为达到铰缝损伤稳定状态而进行迭代的次数. 当超限车队前端位置小于22.2 m时,原损伤状态保持稳定.当车队到达22.2 m处时,每一次计算迭代过程都引起铰缝3开裂状态向两侧扩散,当n=17时,8.3~8.8 m段开始失效;当n=23时,铰缝3的损伤范围前端扩大到16.5 m处,失效前端扩大到14.80m,同时损伤蔓延到相邻铰缝,引起铰缝2处15.3~16.0 m处损伤;当n=28时,计算达到稳定,铰缝3完全失效,铰缝2处14.0~19.8 m损伤. 随后车队继续前进,损伤继续扩大. 在本例中,当n=23时铰缝2损伤开始于14.8~16.0 m而非与铰缝3一样起始于跨中有2点原因:1)该部位附近有车轴作用;2)此时铰缝3仅端部附近未失效,整个车辆荷载仅由板1~3支座和铰缝3两端未失效部位承担,故此时铰缝3两端剪力较大,从而有较大剪力传递到铰缝2相应部位(纵向上铰缝3失效部位端点与铰缝2受损部位在同一位置). 而此时铰缝2中部附近虽也有车轴作用,但因铰缝3中部段失效,此处无剪力传递给铰缝2. 这种一条铰缝的损伤端点与另一条铰缝的损伤起点在纵向上处于同一位置的开裂现象有在Newton K5桥桥面观察到[30].

图 11

图 11   铰缝损伤区域随车队行进的变化

Fig.11   Evolution of damage area of hinged joints with movement of vehicle queue


综上,铰缝3在设计荷载下开裂状态保持稳定,在考虑1.2倍荷载扩大系数时不稳定,判定其损伤程度为中.

4. 结 论

(1)通过将空心板梁桥理想化为铰接的正交异性板桥,引入铰缝剪力-挠度差关系作为板件联系条件,建立二维的空心板梁桥损伤铰缝剪力计算模型.

(2)以铰缝现有损伤及后续演化为依据,提出铰缝段损伤程度评定标准.

(3)以损伤铰缝剪力计算模型和铰缝段损伤程度评定标准为基础,提出铰缝损伤评估模型,为后续维修加固决策提供理论依据及定量标准.

(4)本研究方法计算得到的剪力与有限元结果误差小于10%,可以满足工程需要.

(5)中小跨径常见的装配式桥梁的横向连接一般可以分为铰接和刚接2种,横向连接损伤对于刚接桥梁同样是常见病害.后续将同时考虑板间的剪力和弯矩传递,扩大损伤评估模型的适用范围.

附 录

A1m~D3m表达式如下所示.

$ y = \eta - v/2 $处的内力和位移的连续性条件:

$ \left. \begin{gathered} {\left. {{w^{\left( 1 \right)}}} \right|_{y{\text{ = }}\eta -v/2}} = {\left. {{w^{\left( 2 \right)}}} \right|_{y{\text{ = }}\eta -v/2}}, \hfill \\ {\left. {\frac{{\partial {w^{\left( 1 \right)}}}}{{\partial y}}} \right|_{y{\text{ = }}\eta -v/2}} = {\left. {\frac{{\partial {w^{\left( 2 \right)}}}}{{\partial y}}} \right|_{y{\text{ = }}\eta -v/2 }},\hfill \\ {\left. {{Q_y}^{\left( 1 \right)}} \right|_{y{\text{ = }}\eta -v/2}} = {\left. {{Q_y}^{\left( 2 \right)}} \right|_{y{\text{ = }}\eta -v/2}}, \hfill \\ {\left. {{M_y}^{\left( 1 \right)}} \right|_{y{\text{ = }}\eta -v/2}} = {\left. {{M_y}^{\left( 2 \right)}} \right|_{y{\text{ = }}\eta -v/2}}.\hfill \\ \end{gathered} \right\} $

$ y = \eta + v/2 $处的内力和位移的连续性条件:

$ \left. \begin{gathered} {\left. {{w^{\left( 2 \right)}}} \right|_{y{\text{ = }}\eta {\text{ + }}v/2}} = {\left. {{w^{\left( 3 \right)}}} \right|_{y{\text{ = }}\eta + v/2}}, \hfill \\ {\left. {\frac{{\partial {w^{\left( 2 \right)}}}}{{\partial y}}} \right|_{y{\text{ = }}\eta + v/2}} = {\left. {\frac{{\partial {w^{\left( 3 \right)}}}}{{\partial y}}} \right|_{y{\text{ = }}\eta + v/2}}, \hfill \\ {\left. {{Q_y}^{\left( 2 \right)}} \right|_{y{\text{ = }}\eta + v/2}} = {\left. {{Q_y}^{\left( 3 \right)}} \right|_{y{\text{ = }}\eta + v/2}}, \hfill \\ {\left. {{M_y}^{\left( 2 \right)}} \right|_{y{\text{ = }}\eta + v/2}} = {\left. {{M_y}^{\left( 3 \right)}} \right|_{y{\text{ = }}\eta + v/2}} .\hfill \\ \end{gathered} \right\} $

将式(6)代入式(3)、(15)和(16),可以得到

$ \left. \begin{gathered} {A_{1m}} = {w_{0m}} ,\hfill \\ {A_{2m}} = {w_{0m}}{\text{ + }}{q_m}\left( { - {{\left. {{F_{1m}}} \right|}_{y = \eta - v/2}} + {F_{11m}}{{\left. {{F_{2m}}} \right|}_{y = \eta - v/2}}} \right) ,\hfill \\ {A_{3m}} = {w_{0m}}{\text{ + }}{q_m}\left( {\left. {{F_{1m}}} \right|_{y = \eta - v/2}^{y = \eta + v/2} - {F_{11m}}\left. {{F_{2m}}} \right|_{y = \eta - v/2}^{y = \eta + v/2}} \right) ,\hfill \\ {B_{1m}} = - {w_{0m}}{F_{12m}} ,\hfill \\ {B_{2m}} = - {w_{0m}}{F_{12m}} + {q_m}\left( {{{\left. {{F_{2m}}} \right|}_{y = \eta - v/2}} + {F_{11m}}{{\left. {{F_{1m}}} \right|}_{y = \eta - v/2}}} \right) ,\hfill \\ {B_{3m}} = - {w_{0m}}{F_{12m}} + {q_m}\left( { - \left. {{F_2}_m} \right|_{y = \eta - v/2}^{y = \eta + v/2} - {F_{11m}} \left. {{F_{1m}}} \right|_{y = \eta - v/2}^{y = \eta + v/2}} \right), \hfill \\ {C_{1m}} = {w_{0m}}{F_{13m}} + {w_{bm}}{F_{14m}} + {q_m}{F_{15m}} ,\hfill \\ {C_{2m}} = {w_{0m}}{F_{13m}} + {w_{bm}}{F_{14m}} + {q_m}{F_{16m}} ,\hfill \\ {C_{3m}} = {w_{0m}}{F_{13m}} + {w_{bm}}{F_{14m}} + {q_m}{F_{17m}} ,\hfill \\ {D_{1m}} = {w_{0m}}{F_{18m}} + {w_{bm}}{F_{19m}} + {q_m}{F_{20m}} ,\hfill \\ {D_{2m}} = {w_{0m}}{F_{18m}} + {w_{bm}}{F_{19m}} + {q_m}{F_{21m}}, \hfill \\ {D_{3m}} = {w_{0m}}{F_{18m}} + {w_{bm}}{F_{19m}} + {q_m}{F_{22m}} .\hfill \\ \end{gathered} \right\} $

式中:

参考文献

王砚桐

高等级公路中“单板受力”现象及原因分析

[J]. 公路交通技术, 2004, 4: 29- 32

DOI:10.3969/j.issn.1009-6477.2004.04.008      [本文引用: 1]

WANG Yan-tong

Phenomenon of “single beam bearing” in high-grade highways and analysis of its reasons

[J]. Technology of Highway and Transport, 2004, 4: 29- 32

DOI:10.3969/j.issn.1009-6477.2004.04.008      [本文引用: 1]

RUSSELL H G

Adjacent precast concrete box-beam bridges: state of the practice

[J]. PCI Journal, 2011, 56 (1): 75- 91

DOI:10.15554/pcij.01012011.75.91      [本文引用: 1]

NAITO C, JONES L, HODGSON I

Development of flexural strength rating procedures for adjacent prestressed concrete box girder bridges

[J]. Journal of Bridge Engineering, 2011, 16 (5): 662- 670

DOI:10.1061/(ASCE)BE.1943-5592.0000186      [本文引用: 1]

MILLER R A, HLAVACS G M, LONG T, et al

Full-scale testing of shear keys for adjacent box girder bridges

[J]. PCI Journal, 1999, 44 (6): 80- 90

DOI:10.15554/pcij.11011999.80.90      [本文引用: 1]

HLAVACS G M, LONG T, MILLER R A, et al

Nondestructive determination of response of shear keys to environmental and structural cyclic loading

[J]. Transportation Research Record, 1997, 1574 (1): 18- 24

DOI:10.3141/1574-03      [本文引用: 1]

潘桂梅, 李平杰, 马牛静

旧铰接板梁桥横向分布系数现场试验研究

[J]. 中外公路, 2012, 32 (2): 163- 168

DOI:10.3969/j.issn.1671-2579.2012.02.040      [本文引用: 1]

PAN Gui-mei, LI Pin-jie, MA Niu-jing

Field test research on transverse distribution coefficient of an old hinged slab bridge

[J]. Journal of China and Foreign Highway, 2012, 32 (2): 163- 168

DOI:10.3969/j.issn.1671-2579.2012.02.040      [本文引用: 1]

宋国昕. 基于荷载横向分布影响线的空心板桥铰缝损伤识别方法研究[D]. 大连: 大连理工大学, 2020.

[本文引用: 3]

SONG Guo-xin. Research on hinge joint damage identification method of hollow slab bridge based on influence line of lateral load distribution [D]. Dalian: Dalian University of Technology, 2020.

[本文引用: 3]

HUCKELBRIDGE JR A A, EL-ESNAWI H, MOSES F

Shear key performance in multi-beam box girder bridges

[J]. Journal of Performance of Constructed Facilities, 1995, 9 (4): 271- 295

DOI:10.1061/(ASCE)0887-3828(1995)9:4(271)      [本文引用: 2]

钱寅泉, 周正茂, 葛玮明, 等

基于相对位移法的铰缝破损程度检测

[J]. 公路交通科技, 2012, 29 (7): 76- 81

DOI:10.3969/j.issn.1002-0268.2012.07.013      [本文引用: 2]

QIAN Yin-quan, ZHOU Zheng-mao, GE Wei-ming, et al

Deterioration inspection of hinge joints based on relative displacement method

[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (7): 76- 81

DOI:10.3969/j.issn.1002-0268.2012.07.013      [本文引用: 2]

周正茂, 袁桂芳, 田清勇

基于铰缝刚度的板梁桥铰缝损伤评价方法

[J]. 中国公路学报, 2013, 26 (5): 121- 130

DOI:10.3969/j.issn.1001-7372.2013.05.017      [本文引用: 3]

ZHOU Zheng-mao, YUAN Gui-fang, TIAN Qing-yong

Evaluation method for hinge joint damage in multi-slab girder bridge based on stiffness of hinge joint

[J]. China Journal of Highway and Transport, 2013, 26 (5): 121- 130

DOI:10.3969/j.issn.1001-7372.2013.05.017      [本文引用: 3]

于天来, 李海生, 赵云鹏, 等

装配式铰接板桥的铰缝损伤评价

[J]. 桥梁建设, 2016, 46 (4): 51- 54

[本文引用: 1]

YU Tian-lai, LI Hai-sheng, ZHAO Yun-peng, et al

Damage evaluation of hinged joints of assembled hinged slab bridges

[J]. Bridge Construction, 2016, 46 (4): 51- 54

[本文引用: 1]

李岩, 商贺嵩, 吴志文, 等

基于车桥耦合振动的空心板桥铰缝损伤评价指标分析

[J]. 科学技术与工程, 2017, 17 (22): 129- 134

DOI:10.3969/j.issn.1671-1815.2017.22.021      [本文引用: 2]

LI Yan, SHANG He-song, WU Zhi-wen, et al

Evaluation index of hinged joint damage for simply supported multi-slab girder bridges based on vehicle and bridge coupled vibration

[J]. Science Technology and Engineering, 2017, 17 (22): 129- 134

DOI:10.3969/j.issn.1671-1815.2017.22.021      [本文引用: 2]

战家旺, 王冬冬, 高胜星, 等

一种基于冲击响应的装配式板梁桥铰接缝病害动力评估方法

[J]. 土木工程学报, 2018, 51 (6): 103- 110

ZHAN Jia-wang, WANG Dong-dong, GAO Sheng-xing, et al

A dynamic damage evaluation method for hinged joints in fabricated slab-girder bridges

[J]. China Civil Engineering Journal, 2018, 51 (6): 103- 110

ZHAN J W, ZHANG F, SIAHKOUHI M, et al

A damage identification method for connections of adjacent box-beam bridges using vehicle-bridge interaction analysis and model updating

[J]. Engineering Structures, 2021, 228: 111551

DOI:10.1016/j.engstruct.2020.111551      [本文引用: 1]

邹毅松, 袁波波, 王银辉, 等. 基于瞬态动力分析的装配式板桥铰缝损伤识别[J]. 重庆交通大学学报: 自然科学版, 2011, 30(1): 1−3+43.

[本文引用: 1]

ZOU Yi-song, YUAN Bo-bo, WANG Yin-hui, et al. Damage identification of hinged joints of prefabricated slab bridges based on transient dynamics analysis [J]. Journal of Chongqing Jiaotong University: Natural Science. 2011, 30(1): 1−3+43.

[本文引用: 1]

金敦建. 车载作用下预应力空心板梁桥动力响应及铰缝病害评价方法研究[D]. 扬州: 扬州大学, 2019.

[本文引用: 1]

JIN Dun-jian. Dynamic response and hinge joint damage evaluation method of prestressed hollow slab girder bridge under vehicle load [D]. Yangzhou: Yangzhou University, 2019.

[本文引用: 1]

秦小杰, 华光平, 孙汝旺

基于单处铰缝破坏的装配式空心板桥横向分布系数研究

[J]. 河南科技, 2017, (5): 115- 119

DOI:10.3969/j.issn.1003-5168.2017.05.046      [本文引用: 1]

QIN Xiao-jie, HUA Guang-pin, SUN Ru-wang

Study on transverse distribution coefficient of slab assembly type hollow single hinge based on joint destruction

[J]. Henan Science and Technology, 2017, (5): 115- 119

DOI:10.3969/j.issn.1003-5168.2017.05.046      [本文引用: 1]

范立础. 桥梁工程(上册)[M]. 第二版. 北京: 人民交通出版社, 2015.

[本文引用: 2]

魏保立, 邓苗毅

损伤桥梁的荷载横向分布计算方法研究

[J]. 河南理工大学学报:自然科学版, 2015, 34 (1): 102- 108

[本文引用: 1]

WEI Bao-li, DENG Miao-yi

Computional method analysis for transverse load distribution of damage bridge

[J]. Journal of Henan Polytechnic University: Natural Science, 2015, 34 (1): 102- 108

[本文引用: 1]

成琛, 沈成武, 许亮

用铰接板(梁)法计算有损伤桥梁的横向分布系数

[J]. 武汉理工大学学报:交通科学与工程版, 2004, (2): 229- 231+251

CHENG Chen, SHEN Cheng-wu, XU Liang

The hinged-jointed plate method for calculating transverse load dis tribution on a damaged bridge

[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2004, (2): 229- 231+251

旷斌, 李院军

考虑铰缝损伤的装配式空心板梁桥荷载横向分布系数计算方法

[J]. 世界桥梁, 2019, 47 (5): 74- 78

DOI:10.3969/j.issn.1671-7767.2019.05.015      [本文引用: 1]

KUANG Bin, LI Yuan-jun

Methods to calculate load transverse distribution coefficient of assembled void-slab beam bridge counting hinge joint damage

[J]. World Bridges, 2019, 47 (5): 74- 78

DOI:10.3969/j.issn.1671-7767.2019.05.015      [本文引用: 1]

TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. 2nd ed. New York: McGraw-hill, 1959.

[本文引用: 2]

叶见曙, 刘九生, 俞博, 等

空心板混凝土铰缝抗剪性能试验研究

[J]. 公路交通科技, 2013, 30 (6): 33- 39

DOI:10.3969/j.issn.1002-0268.2013.06.007      [本文引用: 1]

YE Jian-shu, LIU Jiu-sheng, YU Bo, et al

Experiment on shear property of hinge joints of concrete hollow slab

[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (6): 33- 39

DOI:10.3969/j.issn.1002-0268.2013.06.007      [本文引用: 1]

BUYUKOZTURK O, BAKHOUM M M, BEATTIE S M

Shear behavior of joints in precast concrete segmental bridges

[J]. Journal of Structural Engineering, 1990, 116 (12): 3380- 3401

DOI:10.1061/(ASCE)0733-9445(1990)116:12(3380)     

RIZKALLA S H, SERRETTE, R L, HEUVEL J S, et al

Multipleshear key connections for precast shear wall panels

[J]. PCI Journal, 1989, 34 (2): 104- 120

DOI:10.15554/pcij.03011989.104.120      [本文引用: 1]

LIU J, FANG J X, CHEN J J, et al

Evaluation of design provisions for interface shear transfer between concretes cast at different times

[J]. Journal of Bridge Engineering, 2019, 24 (6): 06019002

DOI:10.1061/(ASCE)BE.1943-5592.0001393      [本文引用: 1]

李泽雷. 新旧混凝土界面剪切试验研究[D]. 重庆: 重庆大学, 2016.

LI Ze-lei. The experimental research on new and old concrete interfacial shear [D]. Chongqing: Chongqing University, 2016.

刘健. 新老混凝土粘结的力学性能研究[D]. 大连: 大连理工大学, 2000.

[本文引用: 1]

LIU Jian. Study on mechanics performance of adherence of young and old concrete [D]. Dalian: Dalian University of Technology, 2000.

[本文引用: 1]

中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015 [S]. 北京: 人民交通出版社, 2015.

[本文引用: 4]

FROSCH R J, WILLIAMS C S, MOLLEY R T, et al. Concrete box beam risk assessment and mitigation: volume 2. evolution and structural behavior: FHWA/IN/JTRP-2020/07 [R]. West Lafayette: Purdue University, 2020.

[本文引用: 1]

/