|
|
Dissipative energy flow-based port characteristic analysis of modular multilevel converter under sub-synchronous oscillation |
Yuan WANG1( ),Ye LI1,Xianglong LIU1,Guojing DONG1,Yating CHEN1,Yuchen ZHANG1,Junjie CHEN1,Xiaoting MA1,Xingxi YANG2,Ji XIANG2,*( ) |
1. Inner Mongolia Power Economic and Technological Research Institute, Hohhot 010010, China 2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract A risk of sub-synchronous oscillation (SSO) exists when a modular multilevel converter (MMC) is interconnected with weak grids or wind turbines. Conventional time-domain or frequency-domain methods are inadequate for analyzing such SSO risks due to the complex topology of MMC. Thus, a dissipative energy flow-based method was proposed to investigate the impact of MMCs on system SSO. The dynamic response of the MMC terminal under SSO conditions was analyzed with consideration of the phase-locked loop and outer loops of MMC control system. An expression for the average slope of MMC terminal dissipative energy flow was derived, reflecting the source/sink characteristics of the MMC terminal and quantifying the additional damping level provided to the system. A time-domain simulation model was established in Simulink for an interconnected system comprising an MMC, a doubly-fed induction generator, and an infinite bus. Simulation results validated the correctness of the derived expression, demonstrated the influence of MMC parameters on dissipative energy flow, and revealed the relationship between MMC terminal dissipative energy flow and system stability.
|
Received: 16 April 2024
Published: 25 August 2025
|
|
Fund: 国家重点研发计划资助项目(2021YFB2400700);内蒙古电力集团科技项目(2023-3-3). |
Corresponding Authors:
Ji XIANG
E-mail: 1270290575@qq.com;jxiang@zju.edu.cn
|
|
Cite this article:
Yuan WANG,Ye LI,Xianglong LIU,Guojing DONG,Yating CHEN,Yuchen ZHANG,Junjie CHEN,Xiaoting MA,Xingxi YANG,Ji XIANG. Dissipative energy flow-based port characteristic analysis of modular multilevel converter under sub-synchronous oscillation. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1931-1941.
URL:
https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.017 OR https://www.zjujournals.com/eng/Y2025/V59/I9/1931
|
基于耗散能流的次同步振荡下模块化多电平换流器端口特性分析
模块化多电平换流器(MMC)拓扑结构复杂,难以利用传统时域或频域方法分析,且MMC与弱电网、风机互联时存在次同步振荡(SSO)风险. 为此,基于耗散能流研究次同步振荡时 MMC 与系统之间的暂态能量交互特性,从而评定MMC对系统次同步振荡的影响. 考虑锁相环以及MMC控制环外环作用,研究次同步振荡下MMC端口响应. 构建MMC端口耗散能流平均斜率的表达式,该表达式能够反映MMC端口的振荡能量源/汇特性及其为系统提供的附加阻尼水平. 基于Simulink建立MMC-双馈风机-无穷大节点互联系统的时域仿真模型,通过时域仿真结果验证了耗散能流表达式的正确性,且揭示了MMC各参数对耗散能流的影响,反映了MMC端口耗散能流与系统稳定性的联系.
关键词:
模块化多电平换流器(MMC),
定功率控制,
次同步振荡,
耗散能流,
源汇特性
|
|
[1] |
李彬彬, 徐梓高, 徐殿国. 模块化多电平换流器原理及应用 [M]. 北京: 科学出版社, 2021: 8–9.
|
|
|
[2] |
LYU J, CAI X, MOLINAS M Optimal design of controller parameters for improving the stability of MMC-HVDC for wind farm integration[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6 (1): 40- 53
doi: 10.1109/JESTPE.2017.2759096
|
|
|
[3] |
孙雅旻, 吴林林, 王潇, 等 双馈直驱风机混合接入MMC-HVDC送端系统的次同步振荡特性分析与抑制[J]. 电网技术, 2023, 47 (10): 4073- 4081 SUN Yamin, WU Linlin, WANG Xiao, et al Sub-synchronous oscillation characteristics analysis and suppression of DFIGs and PMSGs mixed access to MMC-HVDC sending-end system[J]. Power System Technology, 2023, 47 (10): 4073- 4081
|
|
|
[4] |
SUN D, XIE X, LIU Y, et al Investigation of SSTI between practical MMC-based VSC-HVDC and adjacent turbogenerators through modal signal injection test[J]. IEEE Transactions on Power Delivery, 2017, 32 (6): 2432- 2441
|
|
|
[5] |
SHEN Z, DINAVAHI V Real-time MPSoC-based electrothermal transient simulation of fault tolerant MMC topology[J]. IEEE Transactions on Power Delivery, 2019, 34 (1): 260- 270
doi: 10.1109/TPWRD.2018.2866562
|
|
|
[6] |
李探, 赵成勇, Aniruddha M Gole. MMC-HVDC内部谐波模态识别及其稳定性分析[J]. 中国电机工程学报, 2017, 37 (8): 2185- 2196 LI Tan, ZHAO Chengyong, GOLE A M Identification and stability analysis of the internal harmonic modes of the MMC-HVDC system[J]. Proceedings of the CSEE, 2017, 37 (8): 2185- 2196
|
|
|
[7] |
徐梓高, 杨桂森, 刘瑜超, 等 模块化多电平换流器数学建模方法综述[J]. 东北电力大学学报, 2023, 43 (6): 8- 16 XU Zigao, YANG Guisen, LIU Yuchao, et al Review of modeling method of modular multilevel converter[J]. Journal of Northeast Electric Power University, 2023, 43 (6): 8- 16
|
|
|
[8] |
WU H, WANG X, KOCEWIAK Ł H Impedance-based stability analysis of voltage-controlled MMCs feeding linear AC systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8 (4): 4060- 4074
doi: 10.1109/JESTPE.2019.2911654
|
|
|
[9] |
吕敬, 蔡旭, 张占奎, 等 海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J]. 中国电机工程学报, 2016, 36 (14): 3771- 3781 LV Jing, CAI Xu, ZHANG Zhankui, et al Impedance modeling and stability analysis of MMC-based HVDC for offshore wind farms[J]. Proceedings of the CSEE, 2016, 36 (14): 3771- 3781
|
|
|
[10] |
刘笙, 陈陈. 电力系统暂态稳定的能量函数分析: 网络结构保持模型 [M]. 北京: 科学出版社, 2014.
|
|
|
[11] |
刘晔, 沈沉 交直流混联系统的能量函数构造方法综述与探究[J]. 中国电机工程学报, 2022, 42 (8): 2842- 2854 LIU Ye, SHEN Chen Review and research on construction methods of energy function for hybrid AC-DC power system[J]. Proceedings of the CSEE, 2022, 42 (8): 2842- 2854
|
|
|
[12] |
MOON Y H, LEE E H, ROH T H Development of an energy function reflecting the transfer conductances for direct stability analysis in power systems[J]. IEE Proceedings: Generation, Transmission and Distribution, 1997, 144 (5): 503
doi: 10.1049/ip-gtd:19971458
|
|
|
[13] |
MOON Y H, CHO B H, LEE Y H, et al. Derivation of energy conservation law by complex line integral for the direct energy method of power system stability [C]// Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix: IEEE, 2002: 4662–4667.
|
|
|
[14] |
MOON Y H, CHO B H, LEE Y H, et al. Energy conservation law and its application for the direct energy method of power system stability [C]// Proceedings of the IEEE Power Engineering Society. 1999 Winter Meeting. New York: IEEE, 1999: 695–700.
|
|
|
[15] |
李颖, 沈沉, 刘锋 基于Hamilton实现的电力系统振荡源设备级定位[J]. 电力系统自动化, 2012, 36 (23): 6- 11,86 LI Ying, SHEN Chen, LIU Feng Oscillation source location in control devices of generators based on Hamiltonian realization[J]. Automation of Electric Power Systems, 2012, 36 (23): 6- 11,86
|
|
|
[16] |
陈乾, 沈沉, 刘锋 端口能量及其在风电系统暂态稳定分析中的应用[J]. 电力系统自动化, 2015, 39 (15): 9- 16 CHEN Qian, SHEN Chen, LIU Feng Port energy and its application to transient stability analysis of power systems with wind generation[J]. Automation of Electric Power Systems, 2015, 39 (15): 9- 16
doi: 10.7500/AEPS20140822002
|
|
|
[17] |
陈磊, 闵勇, 胡伟 基于振荡能量的低频振荡分析与振荡源定位 (一)理论基础与能量流计算[J]. 电力系统自动化, 2012, 36 (3): 22- 27,86 CHEN Lei, MIN Yong, HU Wei Low frequency oscillation analysis and oscillation source location based on oscillation energy part one: mathematical foundation and energy flow computation[J]. Automation of Electric Power Systems, 2012, 36 (3): 22- 27,86
|
|
|
[18] |
CHATTERJEE K, SAMANTA S, CHAUDHURI N R Insights into dissipating energy-based source/sink characterization of TCSC and STATCOM for low-frequency oscillations[J]. IEEE Transactions on Power Delivery, 2023, 38 (2): 1426- 1439
doi: 10.1109/TPWRD.2022.3215929
|
|
|
[19] |
MA J, SHEN Y Stability assessment of DFIG subsynchronous oscillation based on energy dissipation intensity analysis[J]. IEEE Transactions on Power Electronics, 2020, 35 (8): 8074- 8087
doi: 10.1109/TPEL.2019.2962217
|
|
|
[20] |
宋宇博. 直驱风电场次同步振荡传播机理与控制策略研究 [D]. 北京: 华北电力大学, 2019. SONG Yubo. Study on propagation mechanism and controls trategy of subsynchronous oscillation in direct drive wind farm [D]. Beijing: North China Electric Power University, 2019.
|
|
|
[21] |
SOLER J A, GROß D, ARAUJO E P, et al Interconnecting power converter control role assignment in grids with multiple AC and DC subgrids[J]. IEEE Transactions on Power Delivery, 2023, 38 (3): 2058- 2071
doi: 10.1109/TPWRD.2023.3236977
|
|
|
[22] |
RUAN S Y, LI G J, OOI B T, et al Power system damping from energy function analysis implemented by voltage-source-converter stations[J]. Electric Power Systems Research, 2008, 78 (8): 1353- 1360
doi: 10.1016/j.jpgr.2007.12.003
|
|
|
[23] |
HAQUE M H Use of energy function to evaluate the additional damping provided by a STATCOM[J]. Electric Power Systems Research, 2004, 72 (2): 195- 202
doi: 10.1016/j.jpgr.2004.04.007
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|