Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (7): 1385-1393    DOI: 10.3785/j.issn.1008-973X.2025.07.006
    
Topological design of brain-like reservoir based on scale-free network
Xuanyun LIU1(),Ying YAN1,Zhiyong YU1,2,3,Fangwan HUANG1,2,3,*()
1. College of Computer and Data Sciences, Fuzhou University, Fuzhou 350108, China
2. Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350108, China
3. Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350108, China
Download: HTML     PDF(1271KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To optimize the reservoir design of echo state networks (ESN), the Chung-Lu (CL) construction algorithm based on random matrix theory was applied to generate flexible and efficient scale-free networks. In response to the degree deviation that occurs during the construction process, random pruning or degree pruning was used to improve the scale-free network. The robustness of the reservoir was improved by simulating random or targeted attacks. Experimental results show that the CL algorithm with a pruning mechanism not only constructs a scale-free network with power-law property, but also has significantly better construction speed and prediction performance than the baseline algorithms, and the effect of random pruning was better than that of degree pruning. Compared with the optimal result of the baseline algorithm, the running time and prediction error of ESN constructed by the CL algorithm based on random pruning were at least reduced by 14.2% and 10.6%.



Key wordsscale-free network      brain-like reservoir      pruning mechanism      echo state network      time series prediction     
Received: 03 September 2024      Published: 25 July 2025
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(62332014);福建省引导性资助项目(2020H0008);福建省促进海洋与渔业产业高质量发展专项资金(FJHYF-ZH-2023-02).
Corresponding Authors: Fangwan HUANG     E-mail: 3167131927@qq.com;hfw@fzu.edu.cn
Cite this article:

Xuanyun LIU,Ying YAN,Zhiyong YU,Fangwan HUANG. Topological design of brain-like reservoir based on scale-free network. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1385-1393.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.07.006     OR     https://www.zjujournals.com/eng/Y2025/V59/I7/1385


基于无标度网络的类脑储备池拓扑设计

为了优化回声状态网络(ESN)储备池的设计,应用基于随机矩阵理论的Chung-Lu(CL)构造算法生成灵活且高效的无标度网络. 针对在构建过程中出现的度值偏差,使用随机剪枝或度值剪枝改进无标度网络. 通过模拟随机攻击或针对性攻击来提高储备池的鲁棒性. 实验结果表明,加入剪枝机制的CL算法构造了具有幂律性质的无标度网络,构建速度和预测性能均明显优于基线算法,随机剪枝的效果优于度值剪枝. 相比基线算法的最优结果,基于随机剪枝的CL算法构建的ESN的运行时间和预测误差最少降低了14.2%和10.6%.


关键词: 无标度网络,  类脑储备池,  剪枝机制,  回声状态网络,  时间序列预测 
Fig.1 Node degree distribution of scale-free network generated by improved Chung-Lu algorithm
Fig.2 First 10 000 data points of MSO dataset (step size is 0.1)
Fig.3 Node degree distribution after pruning by different mechanisms with different power-law indexes
Fig.4 Comparison between ideal average degree and real average degree under different mechanisms
Fig.5 Comparison of rich club coefficient with different power law indexes under different mechanisms
dRc
无剪枝度值剪枝随机剪枝
500.07110.06980.0685
1000.13160.12540.1238
1500.18630.17490.1730
2000.23550.22030.2181
Tab.1 Sparsity of reservoir based on Chung-Lu algorithm
dMG-16数据集MG-17数据集MSO数据集
MSE0MSE1MSE2MSE0MSE1MSE2MSE0MSE1MSE2
503.5531×10?83.5210×10?82.2331×10?83.8731×10?83.3277×10?83.0108×10?85.3602×10?64.9653×10?64.9033×10?6
1003.1707×10?83.1439×10?82.1055×10?82.7786×10?82.3975×10?81.8670×10?85.0159×10?62.8118×10?68.0285×10?7
1502.0003×10?81.7647×10?81.1835×10?82.4719×10?81.9192×10?81.6819×10?83.4854×10?61.4670×10?63.9945×10?7
2003.6210×10?82.8335×10?81.7918×10?82.2193×10?82.1550×10?81.8878×10?84.8723×10?63.3225×10?67.6476×10?7
Tab.2 Mean squared error of echo state networks based on Chung-Lu algorithm
dMG-16数据集MG-17数据集MSO数据集
MAPE0MAPE1MAPE2MAPE0MAPE1MAPE2MAPE0MAPE1MAPE2
500.50090.50050.41500.33790.27930.26391.54461.33660.9384
1000.47310.45400.36460.29370.26310.19851.39931.32200.7765
1500.35270.34810.31930.25820.21640.17080.97640.87190.6432
2000.50720.44720.34660.30370.29560.20381.64631.23080.8766
Tab.3 Mean absolute percentage error of echo state networks based on Chung-Lu algorithm
dMG-16数据集MG-17数据集MSO数据集
tr,0/str,1/str,2/str,0/str,1/str,2/str,0/str,1/str,2/s
5035.638135.702035.665435.382835.883935.441935.433235.808635.7588
10045.537745.557745.557545.337745.432345.383545.247545.383945.2590
15055.127855.462755.281855.153655.411155.301354.726954.900854.8694
20064.786764.841964.807864.417264.670764.582963.774765.059164.0535
Tab.4 Running time of echo state networks based on Chung-Lu algorithm
构建算法MG-16数据集MG-17数据集MSO数据集
MSEMAPEtr/sMSEMAPEtr/sMSEMAPEtr/s
本研究1.1835×10?80.319355.28181.6819×10?80.170855.30133.9945×10?70.643254.8694
BA算法3.3468×10?80.454564.42533.0127×10?80.283465.00103.5008×10?62.466745379.2237
MC2.0642×10?80.370945453.31142.8791×10?80.268947250.78565.4044×10?63.6511190162.7360
MCC2.4475×10?80.3573104688.04842.9963×10?80.2758106434.13045.9746×10?62.37574781.4928
MCE2.4980×10?80.41134767.13583.2662×10?80.31914701.74593.9496×10?61.461064.5388
Tab.5 Comparison of prediction performance of echo state networks constructed by different methods under different datasets
[1]   FOLGHERAITER M, YSKAK A, YESSIRKEPOV S One-shot bipedal robot dynamics identification with a reservoir-based RNN[J]. IEEE Access, 2023, 11: 50180- 50194
doi: 10.1109/ACCESS.2023.3277977
[2]   WANG H, LONG X, LIU X X FastESN: fast echo state network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (12): 10487- 10501
doi: 10.1109/TNNLS.2022.3167466
[3]   LIN J, CHUNG F L, WANG S A fast parametric and structural transfer leaky integrator echo state network for reservoir computing[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54 (5): 3257- 3269
doi: 10.1109/TSMC.2024.3358567
[4]   AKIYAMA T, TANAKA G Computational efficiency of multi-step learning echo state networks for nonlinear time series prediction[J]. IEEE Access, 2022, 10: 28535- 28544
doi: 10.1109/ACCESS.2022.3158755
[5]   VIEHWEG J, WORTHMANN K, MÄDER P Parameterizing echo state networks for multi-step time series prediction[J]. Neurocomputing, 2023, 522: 214- 228
doi: 10.1016/j.neucom.2022.11.044
[6]   HUANG L L, ZHANG Y, XIANG J H, et al Extreme multistability in a hopfield neural network based on two biological neuronal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (11): 4568- 4572
[7]   BEHERA R K, NAIK D, RAMESH D, et al MR-IBC: mapreduce-based incremental betweenness centrality in large-scale complex networks[J]. Social Network Analysis and Mining, 2020, 10 (1): 25
doi: 10.1007/s13278-020-00636-9
[8]   ALESSANDRETTI L, NATERA OROZCO L G, SABERI M, et al Multimodal urban mobility and multilayer transport networks[J]. Environment and Planning B: Urban Analytics and City Science, 2023, 50 (8): 2038- 2070
doi: 10.1177/23998083221108190
[9]   杨旭华, 王磊, 叶蕾, 等 基于节点相似性和网络嵌入的复杂网络社区发现算法[J]. 计算机科学, 2022, 49 (3): 121- 128
YANG Xuhua, WANG Lei, YE Lei, et al Complex network community detection algorithm based on node similarity and network embedding[J]. Computer Science, 2022, 49 (3): 121- 128
doi: 10.11896/jsjkx.210200009
[10]   楼洋, 李均利, 李升, 等 复杂网络能控性鲁棒性研究进展[J]. 自动化学报, 2022, 48 (10): 2374- 2391
LOU Yang, LI Junli, LI Sheng, et al Recent progress in controllability robustness of complex networks[J]. Acta Automatica Sinica, 2022, 48 (10): 2374- 2391
[11]   KAWAI Y, PARK J, ASADA M A small-world topology enhances the echo state property and signal propagation in reservoir computing[J]. Neural Networks, 2019, 112: 15- 23
doi: 10.1016/j.neunet.2019.01.002
[12]   WANG Q, DU C, GENG Y, et al Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks[J]. Chaos, Solitons and Fractals, 2020, 130: 109453
doi: 10.1016/j.chaos.2019.109453
[13]   CHENG J, WU X, ZHOU M, et al A novel method for detecting new overlapping community in complex evolving networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49 (9): 1832- 1844
doi: 10.1109/TSMC.2017.2779138
[14]   TSIOTAS D Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness[J]. Scientific Reports, 2020, 10: 10630
doi: 10.1038/s41598-020-67156-6
[15]   SIDOROV S, MIRONOV S, GRIGORIEV A, et al An investigation into the trend stationarity of local characteristics in media and social networks[J]. Systems, 2022, 10 (6): 249
doi: 10.3390/systems10060249
[16]   WANG B, ZHAO Y, HU F, et al Anomaly detection with subgraph search and vertex classification preprocessing in Chung-Lu random networks[J]. IEEE Transactions on Signal Processing, 2018, 66 (20): 5255- 5268
doi: 10.1109/TSP.2018.2866847
[17]   GLOS A Spectral similarity for Barabási–Albert and Chung-Lu models[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 516: 571- 578
doi: 10.1016/j.physa.2018.10.050
[18]   FASINO D, TONETTO A, TUDISCO F Generating large scale-free networks with the Chung-Lu random graph model[J]. Networks, 2021, 78 (2): 174- 187
doi: 10.1002/net.22012
[19]   WANG W, LIANG J, LIU R, et al A robust variable selection method for sparse online regression via the elastic net penalty[J]. Mathematics, 2022, 10 (16): 2985
doi: 10.3390/math10162985
[20]   WANG L, SU Z, QIAO J, et al A pseudo-inverse decomposition-based self-organizing modular echo state network for time series prediction[J]. Applied Soft Computing, 2022, 116: 108317
doi: 10.1016/j.asoc.2021.108317
[21]   WANG X, WANG X, MA B, et al High precision error prediction algorithm based on ridge regression predictor for reversible data hiding[J]. IEEE Signal Processing Letters, 2021, 28: 1125- 1129
doi: 10.1109/LSP.2021.3080181
[22]   TAN Y X Dynamics analysis of Mackey-Glass model with two variable delays[J]. Mathematical Biosciences and Engineering, 2020, 17 (5): 4513- 4526
doi: 10.3934/mbe.2020249
[23]   FU S, FANG X, CHEN X. Hybrid enhanced echo state network for nonlinear prediction of multivariate chaotic time series [C]// Proceedings of the IEEE International Conference on Networking, Sensing and Control. Shanghai: IEEE, 2022: 1–6.
[24]   YU Y, WANG Y, LUO Z, et al Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University, 2022, 62 (1): 98- 104
[25]   DONG Z, DUAN Y, ZHOU Y, et al Weight-adaptive channel pruning for CNNs based on closeness-centrality modeling[J]. Applied Intelligence, 2024, 54 (1): 201- 215
doi: 10.1007/s10489-023-05164-5
[1] Chen-lin WANG,Jie YANG,Wen-jun JU,Fu GU,Ji-xi CHEN,Yang-jian JI. Short term load forecasting and peak shaving optimization based on intelligent home appliance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1418-1424.
[2] Zi-long WANG,Zhu WANG,Zhi-wen YU,Bin GUO,Xing-she ZHOU. Transnational population migration forecast with multi-source data[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1759-1767.
[3] WU Chao, ZHOU Bo. Complex network analysis of tag as a social network[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2194-2197.