|
|
EEG microstate functional network analysis of different emotional false memories |
Yixuan LI1( ),Ying LI1,2,*( ),Qian XIAO1,Lingyue WANG1,2,Ning YIN1,2,Shuo YANG1,2 |
1. Hebei Key Laboratory of Bioelectromagnetics and Neural Engineering, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China 2. Tianjin Key Laboratory of Bioelectricity and Intelligent Health, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China |
|
|
Abstract The research on the influence of emotions on false memory helps explore the memory-processing mechanisms of the brain. The EEG signals of false memories under different emotion states were collected. The microstate analysis was used to obtain the template maps for each emotion group named from microstate 1 to microstate 5, the time segmentation of the four stages of memory recognition (early processing, familiar processing, episodic recall processing and post-extraction processing) for the emotion groups were divided according to the microstate fitting results, and the phase-locked brain functional networks were constructed in microstates with significant difference in time coverage. The results analyzed of EEG signals from both the temporal perspective and the spatial perspective show that the brain processing patterns of the emotion groups begin to appear different from the episode recall processing stage. The positive group remains in the active microstates 3 and 5 of the prefrontal region and has strong brain function, the negative group remains in microstate 1 and has poor brain function, and the neutral group remains in the active microstates 3 and 4 of the central region. The positive group spends more time and mental resources on plot association and reasoning, while the negative group stays depressed for a longer time, and the neutral group devotes more time and mental resources to information integration.
|
Received: 16 November 2023
Published: 18 January 2025
|
|
Fund: 国家自然科学基金资助项目(51707055, 51877067). |
Corresponding Authors:
Ying LI
E-mail: 2821563467@qq.com;yli@hebut.edu.cn
|
不同情绪错误记忆的脑电微状态功能网络分析
研究情绪对错误记忆的影响,有助于探究大脑的记忆加工机制. 采集不同情绪状态下错误记忆脑电信号,由微状态分析得到各情绪组模板图(微状态1~5),根据微状态拟合结果划分各情绪组记忆再认4个阶段(早期加工、熟悉性加工、情节性回想加工和后提取加工)的时间段,在时间覆盖率有显著差异的微状态内构建相位锁值脑功能网络. 从时间、空间2个角度分析脑电信号,结果表明各情绪组的大脑加工模式从情节回想加工阶段出现不同. 积极组在前额区活跃的微状态3、5中持续停留且脑功能性强;消极组在微状态1中持续停留且脑功能性差;中性组在中央区活跃的微状态3、4中持续停留. 积极组的时间和脑力资源多用于情节联想和推理,消极组的大脑处于低迷状态的时间长,中性组的时间和脑力资源多用于信息整合.
关键词:
脑电图(EEG),
情绪,
错误记忆,
微状态,
脑功能网络
|
|
[1] |
ROEDIGER H L, MCDERMOTT K B Creating false memories: remembering words not presented in lists[J]. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995, 21 (4): 803- 814
doi: 10.1037/0278-7393.21.4.803
|
|
|
[2] |
KRUMHUBER E G, SKORA L I, HILL H C H, et al The role of facial movements in emotion recognition[J]. Nature Reviews Psychology, 2023, 2: 283- 296
doi: 10.1038/s44159-023-00172-1
|
|
|
[3] |
倪召兵, 李颖, 赵营鸽, 等 基于脑功能网络的混合情绪因素对错误记忆影响的研究[J]. 生物医学工程学杂志, 2021, 38 (5): 828- 837 NI Zhaobing, LI Ying, ZHAO Yingge, et al Research on the influence of mixed emotional factors on false memory based on brain functional network[J]. Journal of Biomedical Engineering, 2021, 38 (5): 828- 837
doi: 10.7507/1001-5515.202008042
|
|
|
[4] |
KERSTEN A W, EARLES J L, VERNON L L, et al Negative emotion increases false memory for person/action conjunctions[J]. Cognition and Emotion, 2021, 35 (4): 664- 679
doi: 10.1080/02699931.2021.1891024
|
|
|
[5] |
RIEGEL M, WYPYCH M, WIERZBA M, et al Emotion schema effects on associative memory differ across emotion categories at the behavioural, physiological and neural level[J]. Neuropsychologia, 2022, 172: 108257
doi: 10.1016/j.neuropsychologia.2022.108257
|
|
|
[6] |
YÜVRÜK E, KAPUCU A False (or biased) memory: emotion and working memory capacity effects in the DRM paradigm[J]. Memory and Cognition, 2022, 50: 1443- 1463
doi: 10.3758/s13421-022-01298-y
|
|
|
[7] |
LENTOOR A G Cognitive and neural mechanisms underlying false memories: misinformation, distortion or erroneous configuration?[J]. AIMS Neuroscience, 2023, 10 (3): 255- 268
doi: 10.3934/Neuroscience.2023020
|
|
|
[8] |
GOLDMANN R E, SULLIVAN A L, DROLLER D B J, et al Late frontal brain potentials distinguish true and false recognition[J]. Neuroreport, 2003, 14 (13): 1717- 1720
doi: 10.1097/00001756-200309150-00012
|
|
|
[9] |
CURRAN T Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity[J]. Neuropsychologia, 2004, 42 (8): 1088- 1106
doi: 10.1016/j.neuropsychologia.2003.12.011
|
|
|
[10] |
MOEZZI B, PRATTI L M, HORDACRE B, et al Characterization of young and old adult brains: an EEG functional connectivity analysis[J]. Neuroscience, 2019, 422: 230- 239
doi: 10.1016/j.neuroscience.2019.08.038
|
|
|
[11] |
KLADOS M A, PARASKEVOPOULOS E, PANDRIA N, et al The impact of math anxiety on working memory: a cortical activations and cortical functional connectivity EEG study[J]. IEEE Access, 2019, 7: 15027- 15039
doi: 10.1109/ACCESS.2019.2892808
|
|
|
[12] |
FANG F, POTTER T, NGUYEN T, et al Dynamic reorganization of the cortical functional brain network in affective processing and cognitive reappraisal[J]. International Journal of Neural Systems, 2020, 30 (10): 2050051
doi: 10.1142/S0129065720500513
|
|
|
[13] |
LEHMANN D, OZAKI H, PAL I EEG alpha map series: brain micro-states by space-oriented adaptive segmentation[J]. Electroencephalography and Clinical Neurophysiology, 1987, 67 (3): 271- 288
doi: 10.1016/0013-4694(87)90025-3
|
|
|
[14] |
LIANG J, LI Y, ZHANG Z, et al Sound gaps boost emotional audiovisual integration independent of attention: evidence from an ERP study[J]. Biological Psychology, 2022, 168: 108246
doi: 10.1016/j.biopsycho.2021.108246
|
|
|
[15] |
GUAN K, ZHANG Z, CHAI X, et al EEG based dynamic functional connectivity analysis in mental workload tasks with different types of information[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 632- 642
doi: 10.1109/TNSRE.2022.3156546
|
|
|
[16] |
HUA W, LI Y Electroencephalography based microstate functional connectivity analysis in emotional cognitive reappraisal combined with happy music[J]. Brain Sciences, 2023, 13 (4): 554
doi: 10.3390/brainsci13040554
|
|
|
[17] |
STADLER M A, ROEDIGER H L, MCDERMOTT K B Norms for word lists that create false memories[J]. Memory and Cognition, 1999, 27: 494- 500
doi: 10.3758/BF03211543
|
|
|
[18] |
王一牛, 周立明, 罗跃嘉 汉语情感词系统的初步编制及评定[J]. 中国心理卫生杂志, 2008, 22 (8): 608- 612 WANG Yiniu, ZHOU Liming, LUO Yuejia The pilot establishment and evaluation of Chinese affective words system[J]. Chinese Mental Health Journal, 2008, 22 (8): 608- 612
doi: 10.3321/j.issn:1000-6729.2008.08.014
|
|
|
[19] |
刘红丽. 基于EEG的抑郁症和双相障碍识别研究[D]. 北京: 北京工业大学, 2021: 1–57. LIU Hongli. Research on recognition of depression and bipolar disorder based on EEG [D]. Beijing: Beijing University of Technology, 2021: 1–57.
|
|
|
[20] |
POULSEN A T, PEDRONI A, LANGER N, et al. Microstate EEGlab toolbox: an introductory guide [EB/OL]. (2018–03–27)[2023–11–06]. https://www.biorxiv.org/content/10.1101/289850v1.full.pdf.
|
|
|
[21] |
MURRAY M M, BRUNET D, MICHEL C M Topographic ERP analyses: a step-by-step tutorial review[J]. Brain Topography, 2008, 20 (4): 249- 264
doi: 10.1007/s10548-008-0054-5
|
|
|
[22] |
WANG Z, CHEN Z, ZHANG J EEG emotion recognition based on PLV-rich-club dynamic brain function network[J]. Applied Intelligence, 2023, 53: 17327- 17345
doi: 10.1007/s10489-022-04366-7
|
|
|
[23] |
吴敏, 王化宁, 张羿阳, 等 情绪面孔识别状态下抑郁症患者大脑微状态的差异性研究[J]. 西安交通大学学报, 2019, 53 (4): 143- 149 WU Min, WANG Huaning, ZHANG Yiyang, et al A difference study of brain microstates for depression using recognition of emotional faces[J]. Journal of Xi’an Jiaotong University, 2019, 53 (4): 143- 149
doi: 10.7652/xjtuxb201904021
|
|
|
[24] |
FERNANDES R, SOLIMUN U, ARYANDANI A, et al Comparison of cluster validity index using integrated cluster analysis with structural equation modeling the War-PLS approach[J]. Journal of Theoretical and Applied Information Technology, 2021, 99 (18): 4208- 4219
|
|
|
[25] |
BRANDEIS D, LEHMANN D, MICHEL C M, et al Mapping event-related brain potential microstates to sentence endings[J]. Brain Topography, 1995, 8: 145- 159
doi: 10.1007/BF01199778
|
|
|
[26] |
PEGNA A J, KHATEB A, SPINELLI L, et al Unravelling the cerebral dynamics of mental imagery[J]. Human Brain Mapping, 1997, 5 (6): 410- 421
doi: 10.1002/(SICI)1097-0193(1997)5:6<410::AID-HBM2>3.0.CO;2-6
|
|
|
[27] |
田丰, 张文睿, 李颖洁 立体与非立体虚拟现实影片情绪唤醒差异的电生理特性[J]. 生物医学工程学杂志, 2022, 39 (1): 56- 66 TIAN Feng, ZHANG Wenrui, LI Yingjie Electrophysiological characteristics of emotion arousal difference between stereoscopic and non-stereoscopic virtual reality films[J]. Journal of Biomedical Engineering, 2022, 39 (1): 56- 66
doi: 10.7507/1001-5515.202101010
|
|
|
[28] |
MAGOSSO E, URSINO M The sensory-cognitive interplay: insights into neural mechanisms and circuits[J]. Journal of Integrative Neuroscience, 2022, 22 (1): 3
doi: 10.31083/j.jin2201003
|
|
|
[29] |
DENG L, STANLEY M L, MONGE Z A, et al Age-related compensatory reconfiguration of PFC connections during episodic memory retrieval[J]. Cerebral Cortex, 2021, 31 (2): 717- 730
doi: 10.1093/cercor/bhaa192
|
|
|
[30] |
CHO C, YOO H J, MIN J, et al Changes in medial prefrontal cortex mediate effects of heart rate variability biofeedback on positive emotional memory biases[J]. Applied Psychophysiology and Biofeedback, 2023, 48 (2): 135- 147
doi: 10.1007/s10484-023-09579-1
|
|
|
[31] |
FILIPPINI M, BORRA D, URSINO M, et al Decoding sensorimotor information from superior parietal lobule of macaque via convolutional neural networks[J]. Neural Networks, 2022, 151: 276- 294
doi: 10.1016/j.neunet.2022.03.044
|
|
|
[32] |
HAVE L, QUESQUE F, PRIOT A E, et al Feeling without localizing: exploring tactile misperception in a patient with uncommon parietal left brain damage[J]. Frontiers in Human Neuroscience, 2023, 17: 1167489
doi: 10.3389/fnhum.2023.1167489
|
|
|
[33] |
刘凤英, 姚志刚 错误记忆年老化的认知与神经机制[J]. 应用心理学, 2018, 24 (1): 41- 51 LIU Fengying, YAO Zhigang The cognitive and neural mechanisms of false memory with age[J]. Chinese Journal of Applied Psychology, 2018, 24 (1): 41- 51
doi: 10.3969/j.issn.1006-6020.2018.01.005
|
|
|
[34] |
蓝文威, 陈晨, 张金, 等 联合脑电信号与虚拟技术的大脑情绪状态的半球不对称性研究[J]. 中国生物医学工程学报, 2021, 40 (3): 266- 271 LAN Wenwei, CHEN Chen, ZHANG Jin, et al Asymmetry of brain emotional state based on EEG and VR techniques[J]. Chinese Journal of Biomedical Engineering, 2021, 40 (3): 266- 271
doi: 10.3969/j.issn.0258-8021.2021.03.02
|
|
|
[35] |
甘霖, 田佳宜, 许敏鹏, 等 基于神经认知科学的音乐对情绪诱发的机制研究综述[J]. 复旦学报: 自然科学版, 2021, 60 (3): 340- 346 GAN Lin, TIAN Jiayi, XU Minpeng, et al A review of the mechanism of music inducing emotion based on neurocognitive science[J]. Journal of Fudan University: Natural Science, 2021, 60 (3): 340- 346
|
|
|
[36] |
王潇, 吴国榕, 吴欣然, 等 语言功能偏侧化及其与利手、功能连接的关系[J]. 心理科学进展, 2020, 28 (5): 778- 789 WANG Xiao, WU Guorong, WU Xinran, et al Language lateralization, handedness and functional connectivity[J]. Advances in Psychological Science, 2020, 28 (5): 778- 789
doi: 10.3724/SP.J.1042.2020.00778
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|