|
|
Safety-enhanced multi-vehicle tracking based on joint probability data association |
Jun-hui ZHANG1,2,3( ),Xiao-man GUO2,3,Jing-xian WANG2,3,Zong-jie FU2,3,Da-peng CHEN2,3 |
1. School of Electrical and Automatic Engineering, Changshu Institute of Technology, Suzhou 215500, China 2. Wuxi Internet of Things Innovation Center Co. Ltd, Wuxi 214029, China 3. Kunshan Department, Jiangsu Internet of Things Innovation Center, Wuxi 215347, China |
|
|
Abstract A novel multi-sensor data fusion based multi-vehicle tracking algorithm and a longitudinal collision warning strategy were proposed, in order to achieve the safety-enhanced multi-vehicle tracking in dense clutter environments. The time registration and spatial fusion approaches were introduced, with respect to the problems of time asynchronous sampling sequences of multi-source sensors caused by nonidentity of sampling periods, sampling start-up time and inherent communication time delay, as well as different coordinate systems and different space dimensions. The single sensor multi-object state estimation based on the improved joint probability data association (JPDA) was utilized to estimate the multi-object trajectory, which not only ensured the effective association, but also could reduce the computational complexity to a certain extent. Furthermore, the multi-sensor joint probability data association (MSJPDA) sequential filtering algorithm was employed to update the motion state of targets serially, and the output of the last sensor was utilized as the state estimation of the fusion center, by which the situation of longitudinal collision could be well-estimated. Results of comparative experiment demonstrated the feasibility and effectiveness of the tracking algorithm proposed.
|
Received: 15 November 2022
Published: 11 December 2023
|
|
Fund: 江苏省博士后科研资助计划(2020Z411) |
基于联合概率数据融合的多目标车辆安全跟随
为了实现密集杂波环境下多目标车辆安全跟随,提出多源传感器数据融合的多目标车辆跟踪算法与纵向避撞预警策略. 针对多源传感器观测序列因采样周期、采样起始时刻、通信时延差异等引起的时间异步,以及空间上存在不同维度、不同坐标系的问题,给出时间配准与空间融合的软同步方法. 采用基于改进的联合概率数据关联(JPDA)的单一传感器多目标状态估计算法对目标轨迹进行滤波估计,能够在保证有效关联的同时,在一定程度上降低计算复杂度. 基于多源传感器联合概率数据融合(MSJPDA)序贯滤波算法对目标的运动状态进行序贯更新,将最后一级的输出作为融合中心的最终状态估计,再根据威胁估计模型对追尾危险的发展态势进行评估与分级. 实车试验与仿真结果验证了该算法的可行性与有效性.
关键词:
智能车辆,
多源数据融合,
多车辆跟踪,
威胁估计,
联合概率数据关联
|
|
[1] |
章军辉, 李庆, 陈大鹏 基于BP神经网络的纵向避撞安全辅助算法[J]. 西安交通大学学报, 2017, 51 (7): 140- 147 ZHANG Jun-hui, LI Qing, CHEN Da-peng Safety assistance algorithm for longitudinal collision avoidance based on BP neural network[J]. Journal of Xi'an Jiaotong University, 2017, 51 (7): 140- 147
|
|
|
[2] |
DONG Y, LI X, DEZERT J, et al A novel multi-criteria discounting combination approach for multi-sensor fusion[J]. IEEE Sensors Journal, 2019, 19 (20): 9411- 9421
doi: 10.1109/JSEN.2019.2922769
|
|
|
[3] |
HE S, SHIN H, TSOURDOS A Multi-sensor multi-target tracking using domain knowledge and clustering[J]. IEEE Sensors Journal, 2018, 18 (19): 8074- 8084
doi: 10.1109/JSEN.2018.2863105
|
|
|
[4] |
何友, 关欣, 王国宏 多传感器信息融合研究进展与展望[J]. 宇航学报, 2005, 26 (4): 7 HE You, GUAN Xin, WANG Guo-hong Survey on the progress and prospect of multisensor information fusion[J]. Journal of Astronautics, 2005, 26 (4): 7
|
|
|
[5] |
SINHA A, DING Z, KIRUBARAJAN T, et al Track quality based multitarget tracking approach for global nearest-neighbor association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48 (2): 1179- 1191
doi: 10.1109/TAES.2012.6178056
|
|
|
[6] |
HONG L, CUI N Z An interacting multi-pattern probabilistic data association (IMP-PDA) algorithm for target tracking[J]. IEEE Transactions on Automatic Control, 2001, 46 (8): 1223- 1236
doi: 10.1109/9.940926
|
|
|
[7] |
李首庆, 徐洋 基于自适应聚概率矩阵的JPDA算法研究[J]. 西南交通大学学报, 2017, 52 (2): 340- 347 LI Shou-qing, XU Yang Joint probabilistic data association algorithm based on adaptive cluster probability matrix[J]. Journal of Southwest Jiaotong University, 2017, 52 (2): 340- 347
doi: 10.3969/j.issn.0258-2724.2017.02.018
|
|
|
[8] |
孙宁, 秦洪懋, 张利, 等 基于多传感器信息融合的车辆目标识别方法[J]. 汽车工程, 2017, 39 (11): 1310- 1315 SUN Ning, QIN Hong-mao, ZHANG Li, et al Vehicle target recognition based on multi-sensor information fusion[J]. Automotive Engineering, 2017, 39 (11): 1310- 1315
doi: 10.19562/j.chinasae.qcgc.2017.11.014
|
|
|
[9] |
刘俊, 刘瑜, 何友, 等 杂波环境下基于全邻模糊聚类的联合概率数据互联算法[J]. 电子与信息学报, 2016, 38 (6): 1438- 1445 LIU Jun, LIU Yu, HE You, et al Joint probabilistic data association algorithm based on all-neighbor fuzzy clustering in cluster[J]. Journal of Electronic and Information Technology, 2016, 38 (6): 1438- 1445
doi: 10.11999/JEIT150849
|
|
|
[10] |
CORALUPPI S P, CARTHEL C A Multiple hypothesis tracking for targets producing multiple measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (3): 1485- 1498
doi: 10.1109/TAES.2018.2796478
|
|
|
[11] |
YOO H, KIM K, BYEON M, et al Online scheme for multiple camera multiple target tracking based on multiple hypothesis tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27 (3): 454- 469
doi: 10.1109/TCSVT.2016.2593619
|
|
|
[12] |
BAR-SHALOM Y, TSE E Tracking in a cluttered environment with probabilistic data association[J]. Automatic, 1975, 11 (9): 451- 460
|
|
|
[13] |
陈晓, 李亚安, 蔚婧, 等 基于最大熵模糊聚类的快速多目标跟踪算法研究[J]. 西北工业大学学报, 2017, 35 (4): 629- 634 CHEN Xiao, LI Ya-an, WEI Jing, et al A fast multi-target tracking algorithm based on maximum entropy fuzzy clustering[J]. Journal of Northwestern Polytechnical University, 2017, 35 (4): 629- 634
doi: 10.3969/j.issn.1000-2758.2017.04.011
|
|
|
[14] |
郭应时, 王畅, 付锐, 等 城市道路环境中驾驶人应激响应时间特性[J]. 中国公路学报, 2013, 26 (6): 135- 142 GUO Ying-shi, WANG Chang, FU Rui, et al Driver’s reaction time under city road conditions[J]. China Journal of Highway and Transport, 2013, 26 (6): 135- 142
doi: 10.3969/j.issn.1001-7372.2013.06.019
|
|
|
[15] |
王博, 卢萍萍, 管欣, 等 路面附着系数识别方法发展现状综述[J]. 汽车技术, 2014, (8): 1- 7 WANG Bo, LU Ping-ping, GUAN Xin, et al A review on the development status of road adhesion coefficient identification approach[J]. Automobile Technology, 2014, (8): 1- 7
|
|
|
[16] |
章军辉, 李庆, 陈大鹏 实时多目标权重弯道跟随预测控制[J]. 天津大学学报: 自然科学与工程技术版, 2020, 53 (8): 861- 871 ZHANG Jun-hui, LI Qing, CHEN Da-peng Multi-objective real-time weighted model predictive control for car-following[J]. Journal of Tianjin University: Science and Technology, 2020, 53 (8): 861- 871
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|