|
|
Direct numerical simulation of temporally evolving fractal-generated turbulence |
Jun SHI( ),Ying-ning QIU,Yi ZHOU*( ) |
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The direct numerical simulation of temporal evolution of fractal flow field was performed in a high resolution spatial grid to study the characteristics of small scale motions in fractal-generated turbulence. An additional numerical simulation of regular-generated turbulence with the same blockage ratio was also performed for comparison. Random disturbances with appropriate energy distribution were imposed for a quick transition of the two types of flow fields from the laminar initial state to the turbulent state. Numerical results indicated that the fractal-generated turbulence can be significantly affected by the initial velocity conditions for a long time. And in the early stage of the temporally evolution, the kinetic energy generated by the fractal-generated turbulence was smaller, but the large-scale motions of the fractal-generated turbulence in the decay period played an important role in turbulence evolution, resulting in a larger kinetic energy level and a higher turbulence intensity compared with regular-generated turbulence. This observation contributes to the possible passive control of the fractal-generated turbulence. Both fractal-generated and regular-generated turbulence reached the same level of energy and dissipation at the wave number $ kM \approx 20 $, but it was different from the balance of energy transmission and dissipation in energy cascade process. Furthermore, when the regular-generated turbulence became statistically homogenous, the energy decay law was more or less consistent with the Saffman turbulence.
|
Received: 08 August 2021
Published: 30 August 2022
|
|
Fund: 国家重点研发计划政府间国际科技新合作重点专项(2019YFE0104800) |
Corresponding Authors:
Yi ZHOU
E-mail: jun@njust.edu.cn;yizhou@njust.edu.cn
|
时间演化分形流场的直接数值模拟
为了研究分形网格湍流中小尺度结构的运动规律,在具有高分辨率的空间网格中,开展分形流场时间演化的直接数值模拟,并通过模拟具有相同阻塞率的规则流场进行对比研究. 通过给流场中注入合适的能量扰动,促使2类流场从层流初始状态向湍流状态过渡. 数值模拟结果表明,与规则流场相比,分形流场受到初始条件影响的持续时间更久,同时在时间演化的初期,分形流场产生的动能更小,但分形流场在衰减期的大尺度运动起到强化湍流的作用,导致其产生的动能更大、湍流强度更高,有利于实现对流场的被动控制. 分形流场和规则流场均在截断波数 $ kM \approx 20 $时满足能量与耗散水平相等,但有别于能量级串过程中能量传输与耗散的平衡. 当流场达到统计均匀后,规则流场衰减符合Saffman湍流特征的规律.
关键词:
时间演化,
分形网格湍流,
直接数值模拟,
能量级串,
湍流控制
|
|
[1] |
路甬祥 仿生学的科学意义与前沿: 仿生学的意义与发展[J]. 科学中国人, 2004, (4): 22- 24 LU Yong-xiang The scientific significance and frontier of bionics: the significance and development of bionics[J]. Scientific Chinese, 2004, (4): 22- 24
|
|
|
[2] |
MANDELBROT B B. The fractal geometry of nature[M]. New York: WH freeman, 1982.
|
|
|
[3] |
FERKO K, LACHENDRO D, CHIAPPAZZI N, et al. Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence [C]// Active and Passive Smart Structures and Integrated Systems XII. Denver: International Society for Optics and Photonics, 2018: 105951E.
|
|
|
[4] |
STEIROS K, BRUCE P J K, BUXTON O R H, et al Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank[J]. AIChE Journal, 2017, 63 (2): 843- 854
doi: 10.1002/aic.15414
|
|
|
[5] |
SPONFELDNER T, SOULOPOULOS N, BEYRAU F, et al The structure of turbulent flames in fractal and regular-grid generated turbulence[J]. Combustion and Flame, 2015, 162 (9): 3379- 3393
doi: 10.1016/j.combustflame.2015.06.004
|
|
|
[6] |
COMTE-BELLOT G, CORRSIN S The use of a contraction to improve the isotropy of grid-generated turbulence[J]. Journal of Fluid Mechanics, 1966, 25 (4): 657- 682
doi: 10.1017/S0022112066000338
|
|
|
[7] |
ANTONIA R A, ZHOU T, ZHU Y Three-component vorticity measurements in a turbulent grid flow[J]. Journal of Fluid Mechanics, 1998, 374: 29- 57
doi: 10.1017/S0022112098002547
|
|
|
[8] |
SEOUD R E, VASSILICOS J C Dissipation and decay of fractal-generated turbulence[J]. Physics of Fluids, 2007, 19 (10): 105108
doi: 10.1063/1.2795211
|
|
|
[9] |
MAZELLIER N, VASSILICOS J C Turbulence without Richardson-Kolmogorov cascade[J]. Physics of Fluids, 2010, 22 (7): 075101
doi: 10.1063/1.3453708
|
|
|
[10] |
LAVOIE P, BURATTINI P, DJENIDI L, et al Effect of initial conditions on decaying grid turbulence at low Rλ [J]. Experiments in Fluids, 2005, 39 (5): 865- 874
doi: 10.1007/s00348-005-0022-8
|
|
|
[11] |
LAVOIE P, DJENIDI L, ANTONIA R A Effects of initial conditions in decaying turbulence generated by passive grids[J]. Journal of Fluid Mechanics, 2007, 585: 395- 420
doi: 10.1017/S0022112007006763
|
|
|
[12] |
严磊, 朱乐东 格栅湍流场风参数沿风洞轴向变化规律[J]. 实验流体力学, 2015, 29 (1): 49- 54 YAN Lei, ZHU Le-le Wind characteristics of grid-generated wind field along the wind tunnel.[J]. Journal of Experiments in Fluid Mechanics, 2015, 29 (1): 49- 54
doi: 10.11729/syltlx20140075
|
|
|
[13] |
周蓉 被动格栅紊流场横向风速相关性实验研究[J]. 低温建筑技术, 2013, 35 (12): 51- 53 ZHOU Rong Experimental research on coherence of lateral wind velocity in passive grid-generated wind field[J]. Low Temperature Architecture Technology, 2013, 35 (12): 51- 53
doi: 10.3969/j.issn.1001-6864.2013.12.021
|
|
|
[14] |
MAZZI B, VASSILICOS J C Fractal-generated turbulence[J]. Journal of Fluid Mechanics, 2004, 502: 65- 87
doi: 10.1017/S0022112003007249
|
|
|
[15] |
LAIZET S, VASSILICOS J C Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing[J]. Physical Review E, 2012, 86 (4): 046302
doi: 10.1103/PhysRevE.86.046302
|
|
|
[16] |
LAIZET S, VASSILICOS J C Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient[J]. Journal of Fluid Mechanics, 2015, 764: 52- 75
doi: 10.1017/jfm.2014.695
|
|
|
[17] |
LAIZET S, VASSILICOS J C DNS of fractal-generated turbulence[J]. Flow, Turbulence and Combustion, 2011, 87 (4): 673- 705
doi: 10.1007/s10494-011-9351-2
|
|
|
[18] |
LAIZET S, VASSILICOS J C. Direct numerical simulations of turbulent flows generated by regular and fractal grids using an immersed boundary method [C]// 6th International Symposium on Turbulence and Shear Flow Phenomena. Seoul : Begel House Inc, 2009.
|
|
|
[19] |
NAGATA K, SUZUKI H, SAKAI Y, et al Direct numerical simulation of turbulent mixing in grid-generated turbulence[J]. Physica Scripta, 2008, (T132): 014054
|
|
|
[20] |
SUZUKI H, NAGATA K, SAKAI Y, et al. DNS on a spatially developing grid turbulence [C]// Journal of Physics: Conference Series. [s. l. ]: IOP Publishing, 2011, 318(3): 032043.
|
|
|
[21] |
DA SILVA C B, PEREIRA J C F Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets[J]. Physics of Fluids, 2008, 20 (5): 055101
doi: 10.1063/1.2912513
|
|
|
[22] |
VAN REEUWIJK M, HOLZNER M The turbulence boundary of a temporal jet[J]. Journal of Fluid Mechanics, 2014, 739: 254- 275
doi: 10.1017/jfm.2013.613
|
|
|
[23] |
DIAMESSIS P J, SPEDDING G R, DOMARADZKI J A Similarity scaling and vorticity structure in high Reynolds number stably stratified turbulent wakes[J]. Journal of Fluid Mechanics, 2011, 671: 52- 95
doi: 10.1017/S0022112010005549
|
|
|
[24] |
GAMPERT M, BOSCHUNG J, HENNIG F, et al The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface[J]. Journal of Fluid Mechanics, 2014, 750: 578- 596
doi: 10.1017/jfm.2014.280
|
|
|
[25] |
SMYTH W D, MOUM J N Length scales of turbulence in stably stratified mixing layers[J]. Physics of Fluids, 2000, 12 (6): 1327- 1342
doi: 10.1063/1.870385
|
|
|
[26] |
WATANABE T, ZHANG X, NAGATA K Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers[J]. Physics of Fluids, 2018, 30 (3): 035102
doi: 10.1063/1.5022423
|
|
|
[27] |
WATANABE T, NAGATA K Integral invariants and decay of temporally developing grid turbulence[J]. Physics of Fluids, 2018, 30 (10): 105111
doi: 10.1063/1.5045589
|
|
|
[28] |
HUSSAINI M Y, ZANG T A Spectral methods in fluid dynamics[J]. Annual Review of Fluid Mechanics, 1987, 19 (1): 339- 367
doi: 10.1146/annurev.fl.19.010187.002011
|
|
|
[29] |
NAGATA K, SUZUKI H, SAKAI Y, et al. Direct numerical simulation of turbulence with scalar transfer around complex geometries using the immersed boundary method and fully conservative higher-order finite-difference schemes [M]// Numerical Simulations Examples and Applications in Computational Fluid Dynamics. [s. l. ] : IntechOpen, 2010, Chap. 3.
|
|
|
[30] |
LAIZET S, VASSILICOS J C Multiscale generation of turbulence[J]. Journal of Multiscale Modelling, 2009, 1 (1): 177- 196
doi: 10.1142/S1756973709000098
|
|
|
[31] |
KEMPF A, KLEIN M, JANICKA J Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries[J]. Flow, Turbulence and Combustion, 2005, 74 (1): 67- 84
doi: 10.1007/s10494-005-3140-8
|
|
|
[32] |
KITAMURA T, NAGATA K, SAKAI Y, et al On invariants in grid turbulence at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2014, 738: 378- 406
doi: 10.1017/jfm.2013.595
|
|
|
[33] |
LAIZET S, LAMBALLAIS E High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy[J]. Journal of Computational Physics, 2009, 228 (16): 5989- 6015
doi: 10.1016/j.jcp.2009.05.010
|
|
|
[34] |
SENGUPTA T K, SHARMA N, SENGUPTA A Non-linear instability analysis of the two-dimensional Navier-Stokes equation: the Taylor-Green vortex problem[J]. Physics of Fluids, 2018, 30 (5): 054105
doi: 10.1063/1.5024765
|
|
|
[35] |
LAIZET S, NEDIĆ J, VASSILICOS J C Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid[J]. International Journal of Computational Fluid Dynamics, 2015, 29 (3−5): 286- 302
doi: 10.1080/10618562.2015.1058371
|
|
|
[36] |
MOIN P, MAHESH K Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30 (1): 539- 578
doi: 10.1146/annurev.fluid.30.1.539
|
|
|
[37] |
ZHOU Y, NAGATA K, SAKAI Y, et al Enstrophy production and dissipation in developing grid-generated turbulence[J]. Physics of Fluids, 2016, 28 (2): 025113
doi: 10.1063/1.4941855
|
|
|
[38] |
LAIZET S, VASSILICOS J C. Direct numerical simulation of fractal-generated turbulence [M]// Direct and large Eddy simulation VII. [s. l. ] : Springer, Dordrecht, 2010: 17-23.
|
|
|
[39] |
MELINA G, BRUCE P J K, VASSILICOS J C Vortex shedding effects in grid-generated turbulence[J]. Physical Review Fluids, 2016, 1 (4): 044402
doi: 10.1103/PhysRevFluids.1.044402
|
|
|
[40] |
NAGATA K, SAIKI T, SAKAI Y, et al Effects of grid geometry on non-equilibrium dissipation in grid turbulence[J]. Physics of Fluids, 2017, 29 (1): 015102
doi: 10.1063/1.4973416
|
|
|
[41] |
DICKEY T D, MELLOR G L Decaying turbulence in neutral and stratified fluids[J]. Journal of Fluid Mechanics, 1980, 99 (1): 13- 31
doi: 10.1017/S002211208000047X
|
|
|
[42] |
LIU H T Energetics of grid turbulence in a stably stratified fluid[J]. Journal of Fluid Mechanics, 1995, 296: 127- 157
doi: 10.1017/S0022112095002084
|
|
|
[43] |
ZHOU Y, NAGATA K, SAKAI Y, et al Relevance of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids[J]. Physics of Fluids, 2014, 26 (7): 075105
doi: 10.1063/1.4890746
|
|
|
[44] |
ZHOU Y, NAGATA K, SAKAI Y, et al Development of turbulence behind the single square grid[J]. Physics of Fluids, 2014, 26 (4): 045102
doi: 10.1063/1.4870167
|
|
|
[45] |
HURST D, VASSILICOS J C Scalings and decay of fractal-generated turbulence[J]. Physics of Fluids, 2007, 19 (3): 035103
doi: 10.1063/1.2676448
|
|
|
[46] |
ANTONIA R A, ORLANDI P Similarity of decaying isotropic turbulence with a passive scalar[J]. Journal of Fluid Mechanics, 2004, 505: 123- 151
doi: 10.1017/S0022112004008456
|
|
|
[47] |
BURATTINI P, LAVOIE P, ANTONIA R A Velocity derivative skewness in isotropic turbulence and its measurement with hot wires[J]. Experiments in Fluids, 2008, 45 (3): 523- 535
doi: 10.1007/s00348-008-0495-3
|
|
|
[48] |
ZHOU Y, NAGATA K, SAKAI Y, et al Energy transfer in turbulent flows behind two side-by-side square cylinders[J]. Journal of Fluid Mechanics, 2020, 903 (A4): 1- 31
|
|
|
[49] |
TAYLOR G I Statistical theory of turbulence-II[J]. Proceedings of the ROYAL SOCIETY of London. Series A, Mathematical and Physical Sciences, 1935, 151 (873): 444- 454
|
|
|
[50] |
GOTO S, VASSILICOS J C Local equilibrium hypothesis and Taylor’s dissipation law[J]. Fluid Dynamics Research, 2016, 48 (2): 021402
doi: 10.1088/0169-5983/48/2/021402
|
|
|
[51] |
ALEXANDROVA O, CARBONE V, VELTRI P, et al Small-scale energy cascade of the solar wind turbulence[J]. The Astrophysical Journal, 2008, 674 (2): 1153
doi: 10.1086/524056
|
|
|
[52] |
SAFFMAN P G The large-scale structure of homogeneous turbulence[J]. Journal of Fluid Mechanics, 1967, 27 (3): 581- 593
doi: 10.1017/S0022112067000552
|
|
|
[53] |
BATCHELOR G K, PROUDMAN I The large-scale structure of homogenous turbulence[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1956, 248 (949): 369- 405
doi: 10.1098/rsta.1956.0002
|
|
|
[54] |
KROGSTAD P Å, DAVIDSON P A Is grid turbulence Saffman turbulence?[J]. Journal of Fluid Mechanics, 2010, 642: 373- 394
doi: 10.1017/S0022112009991807
|
|
|
[55] |
北村拓也, 長田孝二, 酒井康彦, 等 格子乱流のエネルギー減衰域における不変量について[J]. 日本機械学会論文集 B 編, 2012, 78 (795): 1928- 1941 KITAMURA T, NAGATA K, SAKAI Y, et al On invariants in energy decay region in grid turbulence[J]. Transactions of the Japan Society of Mechanical Engineers. B, 2012, 78 (795): 1928- 1941
doi: 10.1299/kikaib.78.1928
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|