1. College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China 2. Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Jinzhong 030600, China
The local pressure in the pipe network did not meet the minimum service water pressure specified by the pipe network due to closing the boundary valve during the implementation of district metered area (DMA) zoning. In order to solve the problem, the optimal partition boundary pipes (BPs) were obtained by taking the number of BPs and its average flow, pipe diameter and length after the spectral clustering algorithm as the objective function, through the function gamultiobj in MATLAB. A series of different minimum service water pressures were set as constraints. The average water age of the nodes and the zoning cost after the partition were taken as the objective function, and the Pareto optimal solution was obtained by gamultiobj optimization calculation. The optimal layout scheme of the equipment on the BPs was determined according to the solution. The simulated annealing algorithm was used to find the best pipe replacement scheme to make the water pressure of the pipe network meet the requirements. Taking the Modena pipe network with only 0.09 m depressurization space as an example, the water quality of users with large volume flow rate and end users after zoning was improved on the basis of the successful completion of zoning. The proposed method can realize the DMA zoning of the pipe network under the minimum depressurization space, and the normal operation of the pipe network can still be ensured after the partition.
Wen-tao SHI,Hong-yan LI,Jian-guo CUI,Yi-yang MA,Chong ZHANG,Ying-hong DONG. DMA partition method of urban water distribution network under extreme small depressurization space. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1533-1541.
Fig.1Flow chart for determination of partition boundary pipes
Fig.2Flow chart for optimization of pipe diameter replacement scheme
Fig.3Topology diagram of case pipe network
Fig.4Comparison of related parameters of boundary pipes under three partition schemes
D/mm
gval/(元·个?1)
gvol/(元·台?1)
100
2300
11810
125
2450
13366
150
2700
15958
200
3150
17289
250
3700
20566
300
5000
25359
350
6700
28834
400
7800
31143
Tab.1Prices of valves and volume flow meters
解编号
Hs,min/ m
$ \overline {W}_{\text{a}} $/ h
gc/ 万元
Tm/ 台
np
nin
DMA1
DMA2
DMA3
DMA4
注:*表示该解在最小服务水压约束为17 m时重复出现
原管网
20
0.72
?
?
0
?
?
?
?
s-1
20
0.72
14.15
11
0
3
5
1
2
s-2
20
0.72
13.2
10
0
3
4
1
2
s-3
20
0.83
12.25
9
0
3
3
1
2
s-4
19
0.70
11.29
8
5
3
3
1
1
s-5
19
0.71
11.15
8
20
3
3
1
1
s-6
19
0.81
10.34
7
5
3
2
1
1
s-7
19
0.83
10.20
7
17
3
2
1
1
s-8*
18
0.70
10.34
7
13
3
2
1
1
s-9
18
0.81
9.39
6
13
3
1
1
1
s-10*
18
0.81
8.44
5
14
2
1
1
1
s-11
17
0.70
9.39
6
13
2
2
1
1
s-12
17
0.72
9.25
6
27
2
2
1
1
s-13
17
0.83
8.30
5
25
2
1
1
1
Tab.2Pareto frontiers and other related information under different pressure constraints
Fig.5Trend of simulated annealing algorithm cooling number and optimal value
管段编号
BD
AD
管段编号
BD
AD
16
DN100
DN200
122
DN100
DN200
123
DN125
DN200
145
DN100
DN150
152
DN100
DN125
167
DN100
DN125
204
DN100
DN125
248
DN100
DN125
258
DN100
DN200
271
DN100
DN250
Tab.3Pipes replacement situation
Fig.6Final zoning result map of Modena pipe network
管网状态
$\overline {W}_{\text{a} }$/h
gw/h
Hav/m
Hlow/m
Qloss/(L·s?1)
分区前
0.72
3.76
25.13
20.09
63.8
分区后
0.72
2.02
25.07
20.01
63.7
Tab.4Performance index of pipe network pre and post DMA partition
[1]
MORRISON J, TOOMS S, ROGERS D. District metered areas guidance notes [R]. London: IWA, 2007.
[2]
LIU J, LANSEY K E Multiphase DMA design methodology based on graph theory and many-objective optimization[J]. Journal of Water Resources Planning and Management, 2020, 146 (8): 04020068
[3]
周立典, 信昆仑, 黄慰忠, 等 供水管网DMA分区优化方法及软件实现[J]. 给水排水, 2020, 56 (2): 112- 115,120 ZHOU Li-dian, XIN Kun-lun, HUANG Wei-zhong, et al Optimization method and software implementation of the DMA zoning for water distribution network[J]. Water and Wastewater Engineering, 2020, 56 (2): 112- 115,120
doi: 10.13789/j.cnki.wwe1964.2020.02.022
[4]
曾翰, 陶涛 供水管网多目标分区方法[J]. 净水技术, 2018, 37 (5): 97- 104 ZENG Han, TAO Tao Multi-objective optimization of sectorization for water supply distribution network[J]. Water Purification Technology, 2018, 37 (5): 97- 104
doi: 10.15890/j.cnki.jsjs.2018.05.017
[5]
周中健, 王琦, 吉瑞博, 等 基于节点自然邻的供水管网DMA分区方法研究[J]. 给水排水, 2019, 55 (7): 118- 123 ZHOU Zhong-jian, WANG Qi, JI Rui-bo, et al Partition of DMAs within water distribution systems based on natural neighbors of nodes[J]. Water and Wastewater Engineering, 2019, 55 (7): 118- 123
doi: 10.13789/j.cnki.wwe1964.2019.07.023
JIA H, DING S, XU X, et al The latest research progress on spectral clustering[J]. Neural Computing and Applications, 2014, 24 (7/8): 1477- 1486
[8]
LUXBURG U A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17 (4): 395- 416
doi: 10.1007/s11222-007-9033-z
[9]
陈达, 柳景青, 陈环宇, 等 独立计量分区截断管水质时空变化规律[J]. 浙江大学学报:工学版, 2019, 53 (9): 1704- 1710 CHEN Da, LIU Jing-qing, CHEN Huan-yu, et al Spatiotemporal change rules of water quality in cut-off water pipelines in district metering areas (DMA)[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (9): 1704- 1710
[10]
WANG J, YU N, CHEN M, et al Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies[J]. Chinese Journal of Chemical Engineering, 2018, 26 (5): 1087- 1101
doi: 10.1016/j.cjche.2017.12.005
[11]
莫根林, 金永喜, 李忠新, 等 多目标优化算法在弹头侵彻明胶运动模拟中的应用[J]. 爆炸与冲击, 2018, 38 (6): 1404- 1411 MO Gen-lin, JIN Yong-xi, LI Zhong-xin, et al Application of multi-objective optimization algorithm to motional simulation of bullets penetrating ballistic gelatin[J]. Explosion and Shock Waves, 2018, 38 (6): 1404- 1411
[12]
PESANTEZ J E, BERGLUND E Z, MAHINTHAKUMAR G Geospatial and hydraulic simulation to design district metered areas for large water distribution networks[J]. Journal of Water Resources Planning and Management, 2020, 146 (7): 06020010
doi: 10.1061/(ASCE)WR.1943-5452.0001243
[13]
ARMAND H, STOIANOV I, GRAHAM N Impact of network sectorisation on water quality management[J]. Journal of Hydroinformatics, 2018, 20 (2): 424- 439
doi: 10.2166/hydro.2017.072
[14]
熊柳, 王琦, 王志红, 等 基于高维多目标优化的给水管网设计方法: 以意大利Fossolo小镇管网为例[J]. 给水排水, 2018, 54 (5): 114- 120 XIONG Liu, WANG Qi, WANG Zhi-hong, et al Many-objective optimization based design of water distribution systems: a case study of Fossolo Town network in Italy[J]. Water and Wastewater Engineering, 2018, 54 (5): 114- 120
doi: 10.3969/j.issn.1002-8471.2018.05.028
[15]
王永, 刘遂庆, 信昆仑, 等 供水管网水龄的逐节点遍历简化算法[J]. 计算机工程与应用, 2009, 45 (20): 199- 201 WANG Yong, LIU Sui-qing, XIN Kun-lun, et al Simplified and junction by junction algorithm to calculate water age in urban water supply and distribution network[J]. Computer Engineering and Applications, 2009, 45 (20): 199- 201
doi: 10.3778/j.issn.1002-8331.2009.20.058
[16]
严煦世, 刘遂庆. 给水排水管网系统(第三版)[M]. 北京: 中国建筑工业出版社, 2014.
[17]
KIRKPATRICK S, GELATT C D, VECCHI M P Optimization by simulated annealing[J]. Science, 1983, 220 (4598): 671- 680
[18]
黄家骏, 腾来, 张朝杰, 等 基于模拟退火算法的I/Q不平衡校正[J]. 浙江大学学报:工学版, 2018, 52 (11): 2218- 2225 HUANG Jia-jun, TENG Lai, ZHANG Chao-jie, et al I/Q imbalance calibration based on simulated annealing algorithm[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (11): 2218- 2225
[19]
BRAGALLI C, D’AMBROSIO C, LEE J, et al On the optimal design of water distribution networks: a practical MINLP approach[J]. Optimization and Engineering, 2012, 13 (2): 219- 246
doi: 10.1007/s11081-011-9141-7
[20]
ZHANG K, YAN H, ZENG H, et al A practical multi-objective optimization sectorization method for water distribution network[J]. Science of The Total Environment, 2019, 656: 1401- 1412
doi: 10.1016/j.scitotenv.2018.11.273
[21]
BRENTAN B M, CARPITELLA S, IZQUIERDO J, et al District metered area design through multicriteria and multiobjective optimization[J]. Mathematical Methods in the Applied Sciences, 2021, 45 (6): 3254- 3271
[22]
蒋浩. 基于节点能量冗余度的城市供水管网DMA自动分区研究[D]. 广州: 广东工业大学, 2017. JIANG Hao. Study on automatic creation of DMA boundaries of water supply networks based on energy redundancy of nodes [D]. Guangzhou: Guangdong University of Technology, 2017.
[23]
LIU J, HAN R Spectral clustering and multicriteria decision for design of district metered areas[J]. Journal of Water Resources Planning and Management, 2018, 144 (5): 04018013
doi: 10.1061/(ASCE)WR.1943-5452.0000916
[24]
SAVIĆ D, FERRARI G Design and performance of district metering areas in water distribution systems[J]. Procedia Engineering, 2014, 89: 1141- 1142
[25]
王丽娟, 张宏伟 供水管网漏失模型研究[J]. 中国给水排水, 2010, 26 (9): 68- 70+74 WANG Li-juan, ZHANG Hong-wei Study on leakage loss model for water distribution network[J]. China Water and Wastewater, 2010, 26 (9): 68- 70+74
doi: 10.19853/j.zgjsps.1000-4602.2010.09.017
[26]
信昆仑, 瞿玲芳, 陶涛, 等 基于综合水龄指数评价的供水管网优化调度[J]. 同济大学学报:自然科学版, 2016, 44 (10): 1580- 1581 XIN Kun-lun, QU Ling-fang, TAO Tao, et al Optimal scheduling of water supply network based on node water age[J]. Journal of Tongji University: Natural Science, 2016, 44 (10): 1580- 1581