Aiming at the shortcomings of the dragonfly algorithm (DA), i.e., slow convergence speed, low convergence accuracy, and poor global search ability, a new DA algorithm was proposed. Firstly, tent chaos was used to initialize the population and K-Means++ clustering was performed on the population. According to the results of clustering, reverse learning and Gaussian mutation were performed on the individuals of the population respectively to enhance the diversity of the population and improve the search efficiency. Secondly, the nonlinear adaptive factor was introduced to accelerate the convergence speed, and the probing elite guiding strategy was used to enhance the ability of jumping out of local convergence. Finally, square hash detection was introduced to increase the convergence accuracy. The optimization algorithm was applied to eight typical complex function optimization problems, and compared with the original dragonfly algorithm and other bionic algorithms. Experimental results show that the improved algorithm has good global convergence and optimization accuracy.
Tab.2Results of 2 000 independent runs of unimodal function
函数
算法
Xbest
Xmean
$\sigma $
f4
CEDA
0
0
0
DA
5.26×100
2.54×101
1.26×101
GWO
0
8.65×101
1.75×100
FOA
1.03×101
1.66×101
3.64×100
DE
1.40×10?10
4.13×10?6
1.46×10?6
ABC
1.20×101
2.62×101
4.46×100
PSO
5.07×100
2.35×101
1.23×101
f5
CEDA
8.88×10?16
2.55×10?15
1.98×10?15
DA
8.79×10?16
2.34×100
1.27×100
GWO
4.44×10?15
6.60×10?15
1.74×10?15
FOA
5.78×10?2
7.62×10?2
1.40×10?2
DE
9.33×10?11
2.66×10?10
1.16×10?10
ABC
6.51×10?5
8.02×10?5
6.47×10?4
PSO
1.27×10?2
1.05×100
8.33×10?1
f6
CEDA
0
0
0
DA
0
4.34×10?1
2.86×10?1
GWO
0
1.99×10?2
2.05×10?2
FOA
4.35×10?7
9.32×10?7
2.47×10?7
DE
1.74×10?11
3.60×10?3
8.10×10?3
ABC
2.02×10?1
3.72×10?1
7.03×10?2
PSO
1.49×10?2
1.24×10?1
6.18×10?2
f7
CEDA
4.71×10?32
4.71×10?32
4.95×10?47
DA
9.10×10?4
1.24×100
1.22×100
GWO
2.73×10?7
2.50×10?3
7.20×10?3
FOA
2.69×100
2.70×100
7.98×10?3
DE
8.36×10?22
3.06×10?20
4.18×10?20
ABC
2.49×10?9
8.45×10?7
2.03×10?6
PSO
5.62×10?5
6.94×10?2
2.09×10?1
f8
CEDA
1.34×10?32
1.34×10?32
1.34×10?48
DA
2.30×10?3
6.38×10?1
9.37×10?1
GWO
1.46×10?6
7.70×10?3
2.64×10?2
FOA
8.11×10?1
8.93×10?1
2.66×10?2
DE
7.95×10?21
1.11×10?19
1.33×10?19
ABC
4.10×10?8
6.83×10?6
1.08×10?5
PSO
1.33×10?4
7.70×10?3
9.10×10?3
Tab.3Results of 2 000 independent runs of multimodal function
Fig.5Comparison of convergence effect of CEDA algorithm and other classical algorithms
[1]
VISHAL S, GROVER A A modified ant colony optimization algorithm (MACO) for energy efficient wireless sensor networks[J]. Optik, 2016, 127 (4): 2169- 2172
doi: 10.1016/j.ijleo.2015.11.117
[2]
LI X T, WANG J N, YIN M H Enhancing the performance of cuckoo search algorithm using orthogonal learning method[J]. Neural Computing and Applications, 2014, 24 (6): 1233- 1247
doi: 10.1007/s00521-013-1354-6
[3]
YANG X S A new metaheuristic bat-inspired algorithm[J]. Nicso, 2010, 284: 65- 74
[4]
WANG G G, GANDOMI A, ALAVI A H, et al A comprehensive review of krill herd algorithm: variants, hybrids and applications[J]. Artificial Intelligence Review, 2019, 51 (1): 119- 148
doi: 10.1007/s10462-017-9559-1
[5]
SEYEDALI M The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83 (5): 80- 98
[6]
SEYEDALI M Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27 (4): 1053- 1073
doi: 10.1007/s00521-015-1920-1
[7]
PENG X X, JIA H M, LANG C B Modified dragonfly algorithm based multilevel thresholding method for color images segmentation[J]. Mathematical Biosciences and Engineering, 2019, 16 (6): 6467- 6511
doi: 10.3934/mbe.2019324
[8]
CUI X T, LI Y, FAN J H, et al A hybrid improved dragonfly algorithm for feature selection[J]. IEEE Access, 2020, 8: 155619- 155629
doi: 10.1109/ACCESS.2020.3012838
[9]
SANJOYD S, BAISHYA S, SEN D, et al A hybrid memory-based dragonfly algorithm with differential evolution for engineering application[J]. Engineering with Computers, 2020, 37 (4): 2775- 2802
[10]
赵齐辉, 杜兆宏, 刘升, 等 差分进化的蜻蜓算法[J]. 微电子学与计算机, 2018, 35 (7): 101- 105 ZHAO Qi-hui, DU Zhao-hong, LIU Sheng, et al Dragonfly algorithm based on differential evolution[J]. Microelectronics and Computer, 2018, 35 (7): 101- 105
[11]
林涛, 冯嘉冀, 赵伊 基于精英策略与正弦余弦机制的蜻蜓算法研究[J]. 微电子学与计算机, 2020, 37 (9): 24- 33 LIN Tao, FENG Jia-ji, ZHAO Yi Study on dragonfly algorithm based on elite strategy and cosines mechanism[J]. Microelectronics and Computer, 2020, 37 (9): 24- 33
[12]
张水平, 高栋 基于随机替换和混合变异的蜻蜓算法[J]. 科学技术与工程, 2020, 20 (22): 9108- 9115 ZHANG Shui-ping, GAO Dong Dragonfly algorithm based on random substitution and hybrid mutation[J]. Science Technology and Engineering, 2020, 20 (22): 9108- 9115
doi: 10.3969/j.issn.1671-1815.2020.22.038
[13]
ZHONG L, ZHOU Y, LUO Q, et al Wind driven dragonfly algorithm for global optimization[J]. Concurrency and Computation: Practice and Experience, 2021, 33 (6): 1- 31
[14]
TENG Z, LV J, GUO L An improved hybrid grey wolf optimization algorithm[J]. Soft Computing, 2019, 23 (15): 6617- 6631
doi: 10.1007/s00500-018-3310-y
[15]
AGGARWAL S, SINGH P Cuckoo, bat and krill herd based K-means++ clustering algorithms[J]. Cluster Computing, 2019, 22 (6): 14169- 14180
[16]
ANDERSON C, CHRISTINE M Practical genetic algorithms[J]. Publications of the American Statistical Association, 2004, 100 (471): 1099- 1099
[17]
龙文, 伍铁斌, 唐斌 收敛因子非线性变化的鲸鱼优化算法[J]. 兰州理工大学学报, 2017, 43 (6): 102- 107 LONG Wen, WU Tie-bin, TANG Bin Whale optimization algorithm with nonlinearly variable convergence factor[J]. Journal of Lanzhou University of Technology, 2017, 43 (6): 102- 107
doi: 10.3969/j.issn.1673-5196.2017.06.020
[18]
PHATAK S C, RAO S S Logistic map: a possible random-number generator[J]. Physical Review E, 1995, 51 (4): 3670- 3678
doi: 10.1103/PhysRevE.51.3670
[19]
滕志军, 吕金玲, 郭力文, 等 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学报, 2018, 50 (11): 40- 49 TENG Zhi-jun, LYU Jin-ling, GUO Li-wen, et al An improved hybrid grey wolf optimization algorithm based on tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50 (11): 40- 49
[20]
TSENG L Y, YANG S B A genetic clustering algorithm for data with non-spherical-shape clusters[J]. Pattern Recognition, 2000, 33 (7): 1251- 1259
doi: 10.1016/S0031-3203(99)00105-3
[21]
ZHOU Y, WANG R, LUO Q Elite opposition-based flower pollination algorithm[J]. Neurocomputing, 2016, 188 (5): 294- 310
[22]
KAUR G, ARORA S Chaotic whale optimization algorithm[J]. Journal of Computational Design and Engineering, 2018, 5 (3): 275- 284
doi: 10.1016/j.jcde.2017.12.006
CAI Y, SHAO C, ZHOU Y, et al Differential evolution with adaptive guiding mechanism based on heuristic rules[J]. IEEE Access, 2019, 7: 58023- 58040
doi: 10.1109/ACCESS.2019.2914963
[25]
ZHONG Y W, LIU X, WANG L J, et al Particle swarm optimisation algorithm with iterative improvement strategy for multi-dimensional function optimisation problems[J]. International Journal of Innovative Computing and Applications, 2012, 4 (3): 223- 232
[26]
MENG A B, CHEN Y C, YIN H, et al Crisscross optimization algorithm and its application[J]. Knowledge Based Systems, 2014, 67: 218- 229
doi: 10.1016/j.knosys.2014.05.004
[27]
SEYEDALI M, SEYEDM M, LEWIS A Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46- 61
doi: 10.1016/j.advengsoft.2013.12.007
[28]
PAN W T A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-based Systems, 2012, 26: 69- 74
doi: 10.1016/j.knosys.2011.07.001
[29]
MALLIPEDDI R, SUGANTHAN P N, PAN Q K Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing Archive, 2011, 11 (2): 1679- 1696
doi: 10.1016/j.asoc.2010.04.024
[30]
KARABOGA D, BASTURK B On the performance of artificial bee colony (abc) algorithm[J]. Applied Soft Computing Archive, 2008, 8 (1): 687- 697
doi: 10.1016/j.asoc.2007.05.007