Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 920-929    DOI: 10.3785/j.issn.1008-973X.2022.05.009
    
Damage evaluation of hinged joints by method of orthotropic plates with hinged joints
Xiao-jing NI1,2(),Yuan XING2,Rong-qiao XU1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Huahui Engineering Design Group Co. Ltd., Shaoxing 312000, China
Download: HTML     PDF(1477KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A two-dimensional shear force calculation model for hinged joint (HJSFM) taking damage position, cracking length and degree of hinged joints into account was established, in order to quantitatively evaluate the damage degree of hinged joint in the hollow slab girder bridge and provide decision-making basis for subsequent maintenance and reinforcement. In this model, single hollow slab was compared to an orthotropic plate, and the bridge was formed by multiple orthotropic plates laterally connected through hinged joints. The relationship between shear force of the hinged joint and relative displacement occurring across the hinged joint was introduced as the force transfer equation between orthotropic plates. The analytical solution for HJSFM under loads was derived based on Fourier series expansion. Based on the evolution of damage state of hinged joints under design load and overload, a three-level damage rating scheme of light, medium and heavy for hinged joints (HJDRS) was put forward. HJSFM and HJDRS composed the core of damage assessment model for hinged joint (HJDAM). Finally, a finite element model was established to verify accuracy of the shear force calculated by the HJSFM, and the HJDAM was applied to a hollow slab girder bridge with damaged hinged joints. Results show that the accuracy of shear force obtained by the HJSFM can meet the engineering needs and the HJDAM is feasible.



Key wordshollow slab girder bridge      method of orthotropic plate with hinged joints      hinged joint disease      damage assessment      maintenance decision     
Received: 15 June 2021      Published: 31 May 2022
CLC:  U 446.1  
Fund:  浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01143);国家自然科学基金资助项目(51478422)
Corresponding Authors: Rong-qiao XU     E-mail: nxj54837@126.com;xurongqiao@zju.edu.cn
Cite this article:

Xiao-jing NI,Yuan XING,Rong-qiao XU. Damage evaluation of hinged joints by method of orthotropic plates with hinged joints. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 920-929.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.009     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/920


基于铰接正交异性板法的铰缝损伤评估理论

为了定量评估空心板梁桥铰缝损伤程度,为后续维修加固提供决策依据,将单块空心板比拟成正交异性板,视空心板桥上部为铰接正交异性板结构,引入铰缝剪力与铰缝两侧挠度差关系式作为板间传力方程,建立二维可考虑不同位置、不同长度及不同程度铰缝损伤影响的铰缝剪力计算模型(HJSFM),并导出荷载作用下铰缝处剪力Fourier级数形式的解析解.在此基础上,以设计荷载和加大荷载下铰缝的损伤演化为依据,提出轻、中、重3级铰缝损伤程度评级方案(HJDRS),形成铰缝损伤评估模型(HJDAM). 以有限元模拟结果对本模型铰缝剪力计算值的正确性进行验证,并将本铰缝损伤评估模型应用于一座铰缝损伤的空心板梁桥. 研究表明,剪力计算模型得到的铰缝剪力的精度满足工程需要,并且该损伤评估模型可行.


关键词: 空心板梁桥,  铰接正交异性板法,  铰缝病害,  损伤评估,  维修决策 
Fig.1 Load and boundary conditions for single orthotropic plate
Fig.2 Shear force-relative displacement curves for hinged joint
Fig.3 Flow chart for shear force of hinged joint
项目 单位 取值
车辆重力标准值 kN 550
前轮重力标准值 kN 30
中轮重力标准值 kN 2×120
后轮重力标准值 kN 2×140
轮距 m 1.8
前轮着地宽度及长度 m 0.3×0.2
中、后轮着地宽度及长度 m 0.6×0.2
轴距 m 3.0+1.4+7.0+1.4
Tab.1 Main technical indexes of vehicle load
Fig.4 Illustration of vehicle load
Fig.5 Illustration of vehicle load arrangement on hollow slab girder bridge
Fig.6 Illustration of cross-section of hollow slab and hinged joint
部位 D1/(N·m) Dx/(N·m) Dy/(N·m) Dxy/(N·m) Dyx/(N·m) a/m b/m E/(N·m?2) ν Kc/(N·m?2)
空心板 2.14×108 1.07×109 1.07×109 7.46×108 2.05×108 20.0 1.0 3.25×1011 0.2 ?
铰缝 ? ? ? ? ? ? ? 3.25×1011 0.2 2.57×1011
Tab.2 Calculation parameters of hollow slab and hinged joint
Fig.7 Illustration of finite element model for calculating shear force at hinged joints of hollow slab bridge
Fig.8 Variation of shear force with number of Fourier expansion terms at F~J
Fig.9 Comparison of shear force at hinged joint 1 resulted from finite element method and proposed shear calculation model
方法 J I H G F
Vmax/(kN·m?1) Er/% Vmax/(kN·m?1) Er/% Vmax/(kN·m?1) Er/% Vmax/(kN·m?1) Er/% Vmax/(kN·m?1) Er/%
有限元模型 ?25.0 0.0 ?23.7 0.0 ?21.8 0.0 ?20.9 0.0 ?6.3 0.0
本研究方法(m=200) ?25.8 3.2 ?26.0 9.7 ?22.7 4.1 ?22.7 8.6 ?6.7 6.3
Tab.3 Shear force at hinged joint 1 resulted from finite element method and proposed shear calculation model
Fig.10 Illustration of cross section of hollow slab girder bridge
参数 数值 参数 数值
Kc/(N?m?2) 3.75×109 ?wu/mm 0.5
Kp/( N?m?2) 1.00×108 Vc/(N?m?1) 1.1×105
?wc/mm 0.0293 Vu/( N?m?1) 5.0×104
Tab.4 Calculation parameters of hinged joint
Fig.11 Evolution of damage area of hinged joints with movement of vehicle queue
[1]   王砚桐 高等级公路中“单板受力”现象及原因分析[J]. 公路交通技术, 2004, 4: 29- 32
WANG Yan-tong Phenomenon of “single beam bearing” in high-grade highways and analysis of its reasons[J]. Technology of Highway and Transport, 2004, 4: 29- 32
doi: 10.3969/j.issn.1009-6477.2004.04.008
[2]   RUSSELL H G Adjacent precast concrete box-beam bridges: state of the practice[J]. PCI Journal, 2011, 56 (1): 75- 91
doi: 10.15554/pcij.01012011.75.91
[3]   NAITO C, JONES L, HODGSON I Development of flexural strength rating procedures for adjacent prestressed concrete box girder bridges[J]. Journal of Bridge Engineering, 2011, 16 (5): 662- 670
doi: 10.1061/(ASCE)BE.1943-5592.0000186
[4]   MILLER R A, HLAVACS G M, LONG T, et al Full-scale testing of shear keys for adjacent box girder bridges[J]. PCI Journal, 1999, 44 (6): 80- 90
doi: 10.15554/pcij.11011999.80.90
[5]   HLAVACS G M, LONG T, MILLER R A, et al Nondestructive determination of response of shear keys to environmental and structural cyclic loading[J]. Transportation Research Record, 1997, 1574 (1): 18- 24
doi: 10.3141/1574-03
[6]   潘桂梅, 李平杰, 马牛静 旧铰接板梁桥横向分布系数现场试验研究[J]. 中外公路, 2012, 32 (2): 163- 168
PAN Gui-mei, LI Pin-jie, MA Niu-jing Field test research on transverse distribution coefficient of an old hinged slab bridge[J]. Journal of China and Foreign Highway, 2012, 32 (2): 163- 168
doi: 10.3969/j.issn.1671-2579.2012.02.040
[7]   宋国昕. 基于荷载横向分布影响线的空心板桥铰缝损伤识别方法研究[D]. 大连: 大连理工大学, 2020.
SONG Guo-xin. Research on hinge joint damage identification method of hollow slab bridge based on influence line of lateral load distribution [D]. Dalian: Dalian University of Technology, 2020.
[8]   HUCKELBRIDGE JR A A, EL-ESNAWI H, MOSES F Shear key performance in multi-beam box girder bridges[J]. Journal of Performance of Constructed Facilities, 1995, 9 (4): 271- 295
doi: 10.1061/(ASCE)0887-3828(1995)9:4(271)
[9]   钱寅泉, 周正茂, 葛玮明, 等 基于相对位移法的铰缝破损程度检测[J]. 公路交通科技, 2012, 29 (7): 76- 81
QIAN Yin-quan, ZHOU Zheng-mao, GE Wei-ming, et al Deterioration inspection of hinge joints based on relative displacement method[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (7): 76- 81
doi: 10.3969/j.issn.1002-0268.2012.07.013
[10]   周正茂, 袁桂芳, 田清勇 基于铰缝刚度的板梁桥铰缝损伤评价方法[J]. 中国公路学报, 2013, 26 (5): 121- 130
ZHOU Zheng-mao, YUAN Gui-fang, TIAN Qing-yong Evaluation method for hinge joint damage in multi-slab girder bridge based on stiffness of hinge joint[J]. China Journal of Highway and Transport, 2013, 26 (5): 121- 130
doi: 10.3969/j.issn.1001-7372.2013.05.017
[11]   于天来, 李海生, 赵云鹏, 等 装配式铰接板桥的铰缝损伤评价[J]. 桥梁建设, 2016, 46 (4): 51- 54
YU Tian-lai, LI Hai-sheng, ZHAO Yun-peng, et al Damage evaluation of hinged joints of assembled hinged slab bridges[J]. Bridge Construction, 2016, 46 (4): 51- 54
[12]   李岩, 商贺嵩, 吴志文, 等 基于车桥耦合振动的空心板桥铰缝损伤评价指标分析[J]. 科学技术与工程, 2017, 17 (22): 129- 134
LI Yan, SHANG He-song, WU Zhi-wen, et al Evaluation index of hinged joint damage for simply supported multi-slab girder bridges based on vehicle and bridge coupled vibration[J]. Science Technology and Engineering, 2017, 17 (22): 129- 134
doi: 10.3969/j.issn.1671-1815.2017.22.021
[13]   战家旺, 王冬冬, 高胜星, 等 一种基于冲击响应的装配式板梁桥铰接缝病害动力评估方法[J]. 土木工程学报, 2018, 51 (6): 103- 110
ZHAN Jia-wang, WANG Dong-dong, GAO Sheng-xing, et al A dynamic damage evaluation method for hinged joints in fabricated slab-girder bridges[J]. China Civil Engineering Journal, 2018, 51 (6): 103- 110
[14]   ZHAN J W, ZHANG F, SIAHKOUHI M, et al A damage identification method for connections of adjacent box-beam bridges using vehicle-bridge interaction analysis and model updating[J]. Engineering Structures, 2021, 228: 111551
doi: 10.1016/j.engstruct.2020.111551
[15]   邹毅松, 袁波波, 王银辉, 等. 基于瞬态动力分析的装配式板桥铰缝损伤识别[J]. 重庆交通大学学报: 自然科学版, 2011, 30(1): 1−3+43.
ZOU Yi-song, YUAN Bo-bo, WANG Yin-hui, et al. Damage identification of hinged joints of prefabricated slab bridges based on transient dynamics analysis [J]. Journal of Chongqing Jiaotong University: Natural Science. 2011, 30(1): 1−3+43.
[16]   金敦建. 车载作用下预应力空心板梁桥动力响应及铰缝病害评价方法研究[D]. 扬州: 扬州大学, 2019.
JIN Dun-jian. Dynamic response and hinge joint damage evaluation method of prestressed hollow slab girder bridge under vehicle load [D]. Yangzhou: Yangzhou University, 2019.
[17]   秦小杰, 华光平, 孙汝旺 基于单处铰缝破坏的装配式空心板桥横向分布系数研究[J]. 河南科技, 2017, (5): 115- 119
QIN Xiao-jie, HUA Guang-pin, SUN Ru-wang Study on transverse distribution coefficient of slab assembly type hollow single hinge based on joint destruction[J]. Henan Science and Technology, 2017, (5): 115- 119
doi: 10.3969/j.issn.1003-5168.2017.05.046
[18]   范立础. 桥梁工程(上册)[M]. 第二版. 北京: 人民交通出版社, 2015.
[19]   魏保立, 邓苗毅 损伤桥梁的荷载横向分布计算方法研究[J]. 河南理工大学学报:自然科学版, 2015, 34 (1): 102- 108
WEI Bao-li, DENG Miao-yi Computional method analysis for transverse load distribution of damage bridge[J]. Journal of Henan Polytechnic University: Natural Science, 2015, 34 (1): 102- 108
[20]   成琛, 沈成武, 许亮 用铰接板(梁)法计算有损伤桥梁的横向分布系数[J]. 武汉理工大学学报:交通科学与工程版, 2004, (2): 229- 231+251
CHENG Chen, SHEN Cheng-wu, XU Liang The hinged-jointed plate method for calculating transverse load dis tribution on a damaged bridge[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2004, (2): 229- 231+251
[21]   旷斌, 李院军 考虑铰缝损伤的装配式空心板梁桥荷载横向分布系数计算方法[J]. 世界桥梁, 2019, 47 (5): 74- 78
KUANG Bin, LI Yuan-jun Methods to calculate load transverse distribution coefficient of assembled void-slab beam bridge counting hinge joint damage[J]. World Bridges, 2019, 47 (5): 74- 78
doi: 10.3969/j.issn.1671-7767.2019.05.015
[22]   TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. 2nd ed. New York: McGraw-hill, 1959.
[23]   叶见曙, 刘九生, 俞博, 等 空心板混凝土铰缝抗剪性能试验研究[J]. 公路交通科技, 2013, 30 (6): 33- 39
YE Jian-shu, LIU Jiu-sheng, YU Bo, et al Experiment on shear property of hinge joints of concrete hollow slab[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (6): 33- 39
doi: 10.3969/j.issn.1002-0268.2013.06.007
[24]   BUYUKOZTURK O, BAKHOUM M M, BEATTIE S M Shear behavior of joints in precast concrete segmental bridges[J]. Journal of Structural Engineering, 1990, 116 (12): 3380- 3401
doi: 10.1061/(ASCE)0733-9445(1990)116:12(3380)
[25]   RIZKALLA S H, SERRETTE, R L, HEUVEL J S, et al Multipleshear key connections for precast shear wall panels[J]. PCI Journal, 1989, 34 (2): 104- 120
doi: 10.15554/pcij.03011989.104.120
[26]   LIU J, FANG J X, CHEN J J, et al Evaluation of design provisions for interface shear transfer between concretes cast at different times[J]. Journal of Bridge Engineering, 2019, 24 (6): 06019002
doi: 10.1061/(ASCE)BE.1943-5592.0001393
[27]   李泽雷. 新旧混凝土界面剪切试验研究[D]. 重庆: 重庆大学, 2016.
LI Ze-lei. The experimental research on new and old concrete interfacial shear [D]. Chongqing: Chongqing University, 2016.
[28]   刘健. 新老混凝土粘结的力学性能研究[D]. 大连: 大连理工大学, 2000.
LIU Jian. Study on mechanics performance of adherence of young and old concrete [D]. Dalian: Dalian University of Technology, 2000.
[29]   中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015 [S]. 北京: 人民交通出版社, 2015.
[1] ZHANG Yong-le, JIANG Jian-qun, LIU Jia-jin, WANG Zhen-yu. Seismic damage assessment of reinforced concrete structure and
its seismic design
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1294-1300.