Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 202-212    DOI: 10.3785/j.issn.1008-973X.2022.01.023
    
Airborne electromagnetic inversion in one-dimensional frequency-domain based on support vector regression
Yu YAO1(),Zhi-hou ZHANG1,*(),Ze-yu SHI1,Peng-fei LIU1,Si-wei ZHAO2,Tian-yi ZHANG1,Ming-hao ZHAO1
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
2. China Railway Eryuan Geotechnical Engineering Limited Company, Chengdu 610031, China
Download: HTML     PDF(1203KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The machine learning method was applied to the inversion of airborne electromagnetic data in order to improve the accuracy of airborne electromagnetic inversion in one-dimensional frequency-domain. An end-to-end inversion method of one-dimensional frequency-domain airborne electromagnetic data was proposed based on multiple-output least square support vector regression (MLS-SVR). Forward calculations of different geological models were conducted to obtain sample data set. The framework of MLS-SVR model was constructed. The input end was normalized vertical magnetic field component, and the output end was geological parameters. Then the grid-search method and the K-fold cross-validation method were applied to search for the best parameters of the MLS-SVR model. The parameters of geological model were predicted via MLS-SVR. The experimental results show that the geological parameters can be accurately predicted with MLS-SVR. MLS-SVR has the advantage of high-precision compared with single support vector regression (S-SVR) and multiple-output support vector regression (M-SVR). The inversion of the measured data shows the effectiveness of the method.



Key wordsairborne electromagnetic      one-dimensional frequency-domain inversion      multiple output      end-to-end      least square support vector machine     
Received: 03 February 2021      Published: 05 January 2022
CLC:  P 631  
Fund:  四川省科技厅计划资助项目(2019YFG0460,2020YFG303,2021YJ0031);国家重点研发计划资助项目(2018YFC1505401);中国中铁股份有限公司科技研究开发计划资助项目(CZ01-重点-05)
Corresponding Authors: Zhi-hou ZHANG     E-mail: 1298170964@qq.com;logicprimer@163.com
Cite this article:

Yu YAO,Zhi-hou ZHANG,Ze-yu SHI,Peng-fei LIU,Si-wei ZHAO,Tian-yi ZHANG,Ming-hao ZHAO. Airborne electromagnetic inversion in one-dimensional frequency-domain based on support vector regression. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 202-212.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.023     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/202


基于支持向量回归的一维频率域航空电磁反演

为了提高一维频率域航空电磁的反演精度,将机器学习方法应用于航空电磁数据的反演中,提出基于多输出最小二乘支持向量回归(MLS-SVR)的一维频率域航空电磁端到端反演方法. 对不同地电模型进行正演计算,获得样本数据集;搭建MLS-SVR模型框架,输入端为归一化后的垂直磁场分量,输出端为地电模型参数;利用网格寻优和K-折交叉验证进行调参;利用MLS-SVR模型进行反演. 试验结果表明,利用MLS-SVR可以准确地反演出各地电模型参数,与单输出支持向量回归(S-SVR)和多输出支持向量回归(M-SVR)算法相比,该反演方法的精度更高,实测数据反演表明了该方法的有效性.


关键词: 航空电磁,  一维频率域反演,  多输出,  端到端,  最小二乘支持向量机 
Fig.1 Schematic diagram of airborne electromagnetism layered medium in frequency domain
Fig.2 Data set is mapped to high-dimensional space via radial basis function
算法 RMSE
$ \mathop \rho \nolimits_1 $ $ \mathop \rho \nolimits_2 $ $ \mathop h\nolimits_1 $
S-SVR 1.36 6.02 4.91
M-SVR 2.12 4.15 3.40
MLS-SVR 1.87 3.81 2.98
Tab.1 RMSE values of each parameter
样本
序号
理论值 S-SVR M-SVR MLS-SVR
$ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m
1 450 800 120 443.59 733.92 127.25 435.77 763.59 114.64 437.50 766.28 116.56
2 700 300 90 712.68 323.52 84.25 721.26 313.92 86.42 719.74 311.50 84.96
3 300 850 135 307.43 780.45 126.34 315.78 806.77 130.26 312.91 815.14 129.35
4 800 450 75 814.91 410.32 70.02 773.95 429.66 73.33 778.90 433.25 72.59
5 550 750 45 540.66 697.64 40.30 532.74 725.71 43.66 535.42 727.57 44.01
Tab.2 Comparison of inversion results of five sets of data for two-layered model with different methods
反演
方法
相对误差/% 平均值
1 2 3 4 5
S-SVR 5.33 5.35 5.69 5.77 6.37 5.70
M-SVR 4.06 3.89 4.65 3.33 3.12 3.81
MLS-SVR 3.29 4.08 4.19 3.19 2.61 3.47
Tab.3 Comparison of relative errors of five sets of data retrieved by different methods for two-layered model
Fig.3 Comparison of inversion results of two-layered model with different methods
算法 RMSE
$ {\rho _{\text{1}}} $ $ \rho {}_{\text{2}} $ $ {\rho _{\text{3}}} $ $ \mathop h\nolimits_1 $ $ \mathop h\nolimits_2 $
S-SVR 1.89 7.85 8.95 5.75 8.39
M-SVR 2.54 5.70 7.40 4.52 6.14
MLS-SVR 2.13 5.41 7.11 3.85 5.89
Tab.4 RMSE values of each parameters
样本序号 理论值 MLS-SVR反演值
$\;{\rho _{\text{1} } }$/ $(\Omega \cdot {\text{m)}}$ $\;{\rho _{\text{2} } }$/ $(\Omega \cdot {\text{m)}}$ $\;{\rho _{\text{3} } }$/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop h\nolimits_2 $/m $\;{\rho _{\text{1} } }$/ $(\Omega \cdot {\text{m)}}$ $\;{\rho _{\text{2} } }$/ $(\Omega \cdot {\text{m)}}$ $\; {\rho _{\text{3} } }$/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ {h_2} $/m
1 150 600 400 45 75 155.67 624.09 375.66 43.07 69.33
2 200 400 600 75 30 193.96 374.77 560.14 71.66 27.96
3 800 450 600 90 30 830.16 428.69 568.43 95.55 32.43
4 700 400 200 45 45 667.45 426.08 214.88 42.86 48.01
5 800 350 700 60 75 834.56 369.25 749.94 63.22 69.91
Tab.5 Inversion results of MLS-SVR method for three-layered model
反演方法 相对误差/% 平均值
1 2 3 4 5
S-SVR 6.49 7.54 7.66 8.01 7.09 7.36
M-SVR 5.88 6.01 5.19 6.44 5.91 6.14
MLS-SVR 5.14 5.44 5.61 6.14 5.82 5.63
Tab.6 Comparison of relative errors of five sets of data for three-layered model with different methods
Fig.4 Comparison of inversion results for three-layered model with different methods
Fig.5 Inversion results of two kinds of five-layered model with MLS-SVR
序号 相对误差/%
无噪声 3%噪声 5%噪声
1 3.84 4.60 4.90
2 4.01 5.29 5.71
3 3.33 4.78 5.49
4 2.86 4.15 4.93
5 4.44 5.17 5.77
6 5.51 7.03 8.77
7 5.85 6.96 9.01
8 6.04 7.19 8.61
9 6.41 6.99 8.83
10 6.23 7.25 9.21
平均值 4.85 5.94 7.12
Tab.7 Comparison of inversion relative error of noise-free data and data with 3% and 5% Gaussian random noise
Fig.6 Inversion results of Occam method for measured data
Fig.7 Comparison of inversion results of Occam method, SVD method and MLS-SVR method
[1]   FOUNTAIN D Airborne electromagnetic system: 50 years of development[J]. Exploration Geophysics, 1998, 29 (2): 1- 11
[2]   JAYSAVAL P, ROBINSON J L, JOHNSON T C Stratigraphic identification with airborne electromagnetic methods at the Hanford Site, Washington[J]. Journal of Applied Geophysics, 2021, 192: 104398- 104408
doi: 10.1016/j.jappgeo.2021.104398
[3]   SIEMON B, IBS-VON SEHT M, FRANK S Airborne electromagnetic and radiometric peat thickness mapping of a bog in Northwest Germany (Ahlen-Falkenberger Moor)[J]. Remote Sensing, 2020, 12 (2): 203- 226
doi: 10.3390/rs12020203
[4]   SU Ben-yu, RAO Rong-fu, LI Zhi-xiong, et al Detecting permafrost in plateau and mountainous areas by airborne transient electromagnetic sensing[J]. Electronics, 2020, 9 (8): 1229- 1240
doi: 10.3390/electronics9081229
[5]   KONÉ A Y, NASR I H, TRAORÉ B, et al Geophysical contributions to gold exploration in Western Mali according to airborne electromagnetic data interpretations[J]. Minerals, 2021, 11 (2): 126- 140
doi: 10.3390/min11020126
[6]   SIEMON B, IBS-VON SEHT M, STEUER A, et al Airborne electromagnetic, magnetic, and radiometric surveys at the German North Sea coast applied to groundwater and soil investigations[J]. Remote Sensing, 2020, 12 (10): 1629- 1653
doi: 10.3390/rs12101629
[7]   KING J, OUDE ESSINK G, KARAOLIS M, et al Quantifying geophysical inversion uncertainty using airborne frequency domain electromagnetic data: applied at the province of Zeeland, the Netherlands[J]. Water Resources Research, 2018, 54 (10): 8420- 8441
doi: 10.1029/2018WR023165
[8]   SAINT-VINCENT P M B, SAMS III J I, HAMMACK R W, et al Identifying abandoned well sites using database records and aeromagnetic surveys[J]. Environmental Science and Technology, 2020, 54 (13): 8300- 8309
doi: 10.1021/acs.est.0c00044
[9]   BARANWAL V C, RØNNING J S. Airborne geophysical surveys and their integrated interpretation [M]//Advances in modeling and interpretation in near surface geophysics. Cham: Springer, 2020: 377-400.
[10]   殷长春, 张博, 刘云鹤, 等 航空电磁勘查技术发展现状及展望[J]. 地球物理学报, 2015, 58 (8): 2637- 2653
YIN Chang-chun, ZHANG Bo, LIU Yun-he, et al Review on airborne EM technology and developments[J]. Chinese Journal of Geophysics, 2015, 58 (8): 2637- 2653
[11]   SENGPIEL K P Approximate inversion of airborne EM data from a multi-layered ground[J]. Geophysical Prospecting, 2006, 36 (4): 446- 459
[12]   周道卿 频率域航空电磁数据的质心深度近似反演[J]. 物探与化探, 2007, 31 (3): 242- 244
ZHOU Dao-qing Inversion of FAEM data with the centroid depth theory[J]. Geophysical and Geochemical Exploration, 2007, 31 (3): 242- 244
doi: 10.3969/j.issn.1000-8918.2007.03.015
[13]   MACNAE J C, SMITH R, POLZER B D, et al Conductivity-depth imaging of airborne electromagnetic step-response data[J]. Geophysics, 1991, 56 (1): 102- 114
doi: 10.1190/1.1442945
[14]   朱凯光, 李冰冰, 王凌群, 等 固定翼电磁数据双分量联合电导率深度成像[J]. 吉林大学学报: 地球科学版, 2015, 45 (6): 276- 282
ZHU Kai-guang, LI Bing-bing, WANG Ling-qun, et al Conductivity-depth imaging of fixed-wing airborne electromagnetic data[J]. Journal of Jilin University: Earth Science Edition, 2015, 45 (6): 276- 282
[15]   ZHENG He-liang, FU Jian-long, MEI Tao, et al. Learning multi-attention convolutional neural network for fine-grained image recognition [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5209-5217.
[16]   RIZVI S, CAO Jie, ZHANG Kai-yu, et al DeepGhost: real-time computational ghost imaging via deep learning[J]. Scientific Reports, 2020, 10 (1): 1- 9
doi: 10.1038/s41598-019-56847-4
[17]   GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645-6649.
[18]   BHATT H S, SINGH R, VATSA M, et al Improving cross-resolution face matching using ensemble-based co-transfer learning[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2014, 23 (12): 5654- 5669
doi: 10.1109/TIP.2014.2362658
[19]   廖晓龙, 张志厚, 范祥泰, 等 基于改进粒子群深度神经网络的频率域航空电磁数据反演[J]. 中南大学学报: 自然科学版, 2020, 51 (8): 2162- 2173
LIAO Xiao-long, ZHANG Zhi-hou, FAN Xiang-tai, et al Frequency domain airborne EM inversion based on improved particle swarm depth neural network[J]. Journal of Central South University: Science and Technology, 2020, 51 (8): 2162- 2173
[20]   AHL A Automatic 1D inversion of multifrequency airborne electromagnetic data with artificial neural networks: discussion and a case study[J]. Geophysical Prospecting, 2010, 51 (2): 89- 98
[21]   PUZYREV V, SWIDINSKY A Inversion of 1D frequency-and time-domain electromagnetic data with convolutional neural networks[J]. Computers and Geosciences, 2020, 149: 104681- 104690
[22]   张志厚, 廖晓龙, 曹云勇, 等 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64 (4): 1435- 1452
ZHANG Zhi-hou, LIAO Xiao-long, CAO Yun-yong, et al Joint gravity and gravity gradient inversion based on deep learning[J]. Chinese Journal of Geophysics, 2021, 64 (4): 1435- 1452
doi: 10.6038/cjg2021O0151
[23]   VAPNIK V N. Statistical learning theory [M]. New York: Wiley, 1998.
[24]   GHEZELBASH R, MAGHSOUDI A, CARRANZA E J M Performance evaluation of RBF- and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of S-A multifractal model and mineralization controls[J]. Earth Science Informatics, 2019, 12 (3): 277- 293
doi: 10.1007/s12145-018-00377-6
[25]   钟仪华, 李榕 基于主成分分析的最小二乘支持向量机岩性识别方法[J]. 测井技术, 2009, 33 (5): 425- 429
ZHONG Yi-hua, LI Rong Application of principle component analysis and least square support vector machine to lithology identification[J]. Well Logging Technology, 2009, 33 (5): 425- 429
doi: 10.3969/j.issn.1004-1338.2009.05.005
[26]   LI Mo, LI Yue, WU Ning, et al Desert seismic random noise reduction framework based on improved PSO–SVM[J]. Acta Geodaetica et Geophysica, 2020, 55 (1): 101- 117
doi: 10.1007/s40328-019-00283-3
[27]   LI Zhong-xiao Adaptive multiple subtraction based on support vector regression[J]. Geophysics, 2019, 85 (1): 1- 52
[28]   唐长江. 时间域航空电磁数据SVM反演方法[D]. 成都: 成都理工大学, 2017.
TANG Chang-jiang. SVM inversion method for time domain airborne electromagnetic data [D]. Chengdu: Chengdu University of Technology, 2017.
[29]   李军峰. 固定翼频率域航空电磁系统测量技术研究[D]. 北京: 中国地质大学, 2010.
LI Jun-feng. A study on measuring technology of fix-wing frequency domain airborne electromagnetic system [D]. Beijing: China University of Geosciences, 2010.
[30]   纳比吉安. 勘查地球物理电磁法[M]. 赵经详, 译. 北京: 地质出版社, 1992: 195−200.
[31]   殷长春, 齐彦福, 刘云鹤, 等 频率域航空电磁数据变维数贝叶斯反演研究[J].  地球物理学报, 2014, 57 (9): 2971- 2980
YIN Chang-chun, QI Yan-fu, LIU Yun-he, et al Review on airborne EM technology and developments[J]. Chinese Journal of Geophysics, 2014, 57 (9): 2971- 2980
[32]   ZHANG Zhe, JIN Gu-min, LI Jian-xun Penalty boundary sequential convex programming algorithm for non-convex optimal control problems[J]. ISA Transactions, 2018, 72: 229- 244
doi: 10.1016/j.isatra.2017.09.014
[33]   SUYKENS J A K, VANDEWALLE J Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9 (3): 293- 300
doi: 10.1023/A:1018628609742
[34]   TUIA D, VERRELST J, ALONSO L, et al Multioutput support vector regression for remote sensing biophysical parameter estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8 (4): 804- 808
doi: 10.1109/LGRS.2011.2109934
[35]   XU Shuo, AN Xin, QIAO Xiao-dong, et al Multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2013, 34 (9): 1078- 1084
doi: 10.1016/j.patrec.2013.01.015
[36]   HU Yue, GILLILAND E, PENG Jing-lin, et al. Applying an ensemble support vector machine (SVM) to lithofacies prediction in the Lower Huron Shale [C]// SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning. Beijing: SEG, 2020: 123-126.
[37]   RODRIGUEZ J D, PEREZ A, LOZANO J A Sensitivity analysis of k-Fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (3): 569- 575
doi: 10.1109/TPAMI.2009.187
[38]   周道卿, 谭林, 谭捍东, 等 频率域吊舱式直升机航空电磁资料的马奎特反演[J]. 地球物理学报, 2010, 53 (2): 421- 427
ZHOU Dao-qing, TAN Lin, TAN Han-dong, et al Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method[J]. Chinese Journal of Geophysics, 2010, 53 (2): 421- 427
doi: 10.3969/j.issn.0001-5733.2010.02.020
[39]   蔡京, 齐彦福, 殷长春 频率域航空电磁数据变加权横向约束反演[J]. 地球物理学报, 2014, 57 (3): 953- 960
CAI Jing, QI Yan-fu, YIN Chang-chun Weighted laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014, 57 (3): 953- 960
doi: 10.6038/cjg20140324
[40]   纪昌明, 周婷, 向腾飞, 等 基于网格搜索和交叉验证的支持向量机在梯级水电系统隐随机调度中的应用[J]. 电力自动化设备, 2014, 34 (3): 125- 131
JI Chang-ming, ZHOU Ting, XIANG Teng-fei, et al Application of support vector machine based on grid search and cross validation in implicit stochastic dispatch of cascaded hydropower stations[J]. Electric Power Automation Equipment, 2014, 34 (3): 125- 131
doi: 10.3969/j.issn.1006-6047.2014.03.021
[1] LIANG Yao, FENG Dong qin. Security risks assessment for physical layer of industrial control system based on attack gain[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 589-.
[2] XIA Ming, DONG Ya-bo, LU Dong-ming. Data transmission reliability assurance scheme based on
hop-by-hop adaptive FEC for wireless sensor networks
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 273-279.
[3] AN Jian-Ai, TUN Min, HE Yong, CAO Wei-Hua. Blast furnace status diagnosis based on burden surface temperature field feature[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1276-1281.
[4] SHANG Jian, DIAO Li-Jie, YUE Heng, CHAI Tian-You. Soft sensor for ball mill load based on multisource data
feature fusion
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1406-1413.