Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1261-1269    DOI: 10.3785/j.issn.1008-973X.2021.07.005
    
Optimization of referral decision considering differences in medical quality
Wei WANG(),Na LI*()
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML     PDF(1114KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A queuing network model was carried out considering the patients’ transfer process, in order to solve the congestion problem caused by improper referral in the current medical consortium, for the medical system composed of a tertiary hospital and community hospitals. Based on the blocktime in the system, an iterative algorithm was designed to solve the steady-state performance parameters, the optimization model of the tertiary hospital was established, the optimal referral ratio was obtained through the interior point method. Experiment results show that transferred patients have the characteristics of low treatment cost and long hospital stay; when there are differences in medical quality, optimization analysis is needed to reduce the waste of resources caused by patient return.



Key wordsmedical referral      queuing theory      iterative algorithm      Markov chain      medical quality     
Received: 02 March 2020      Published: 05 July 2021
CLC:  C 935  
Fund:  国家自然科学基金资助项目(71871138,71471114)
Corresponding Authors: Na LI     E-mail: 1245862284@sjtu.edu.cn;na-li03@sjtu.edu.cn
Cite this article:

Wei WANG,Na LI. Optimization of referral decision considering differences in medical quality. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1261-1269.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.005     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1261


考虑医疗质量差异的医院转诊决策优化

为了解决目前医联体中的转诊不当造成的拥堵问题,针对三级医院和社区医院组成的医疗系统,考虑病人流的转移过程,进行排队网络建模. 设计基于堵塞时长的迭代算法求解稳态性能参数,建立三级医院的决策优化模型,通过内点法求得最优转诊比例. 实验结果表明,优先转诊的病人具有治疗费用低、住院时间长的特点;当医疗质量差异存在时,需要通过优化分析降低病人回流造成的资源浪费.


关键词: 医疗转诊,  排队论,  迭代算法,  马尔可夫链,  医疗质量 
Fig.1 Queuing network model of diagram patient flow
Fig.2 Congestion block-after service system model diagram
Fig.3 Queuing subsystem in tertiary hospital
Fig.4 Queuing system in community hospital
Fig.5 Markov state transition diagram in community hospital
$ {b}_{\mathrm{L}} $/张 $ {T}_{\mathrm{B}} $/d $ {P}^{\mathrm{H}} $ $ \;{\rho }_{\mathrm{L}} $ 相对误差/%
仿真 本文算法 仿真 本文算法 仿真 本文算法 ${T}_{\mathrm{B}} $ $ {P}^{\mathrm{H}} $ $ \;{\rho }_{\mathrm{L}} $
14 2.608 2.590 0.149 0.148 0.855 0.853 0.68 0.91 0.19
16 0.569 0.565 0.142 0.140 0.748 0.748 0.66 1.18 0.00
18 0.139 0.140 0.138 0.139 0.666 0.666 0.70 0.51 0.03
20 0.034 0.033 0.138 0.138 0.599 0.599 0.86 0.15 0.01
Tab.1 Parameters of simulation and proposed algorithm
主诊断 病例占比/% 住院天数/d 住院费用/元
治疗床位 康复床位 治疗床位 康复床位
股骨颈骨折 9.95 6 13 48427 7264
胫腓骨干骨折 1.32 4 10 50462 7821
跖骨骨折 1.01 6 11 28875 8004
股骨粗隆间骨折 7.09 7 10 38413 7277
跟骨骨折 3.92 9 12 35987 6932
闭合性胫骨平台骨折 3.44 7 12 62132 7417
髌骨骨折 2.54 6 15 18483 6947
胫腓骨下端骨折 2.49 5 11 52246 5945
胫骨骨折 1.11 6 12 39437 6426
$ \vdots$ $ \vdots$ $ \vdots$ $ \vdots$ $ \vdots$ $ \vdots$
Tab.2 Some disease-related parameters suitable for referral in central hospital
序号 bL/张 qt/% $ {p}_{{\rm{a}}} $/% $ {p}_{{\rm{b}}} $/% $ {W}_{\mathrm{H}} $/元
1 $ \infty $ $ 0 $ 22.15 100.00 115221.72
2 $ 20$ $ 0 $ 0.01 55.62 102486.49
3 $ 20 $ $1$ 0.00 55.59 102501.10
4 $ 20$ $ 3$ 0.00 55.48 102510.14
5 $ 20 $ $5 $ 0.00 55.33 102492.87
6 $ 20 $ $ 10 $ 0.00 54.83 102337.22
Tab.3 Influence of community hospital parameters on optimal referral rate
$ {R}_{1a} $/元 $ {R}_{2a} $/元 $ {p}_{a} $/% $ {p}_{b} $/% $ {W}_{\mathrm{H}} $/元
20000.0 12996.84 0.00 53.06 84071.69
31093.2 12996.84 27.79 0.00 101537.32
50000.0 12996.84 24.22 0.00 131684.63
31093.2 9000.00 27.79 0.00 96250.17
31093.2 12996.84 0.00 55.33 102492.79
31093.2 15000.00 0.00 55.53 106141.80
Tab.4 Influence of disease treatment cost on optimal decision
[1]   GORUNESCU F, MILLARD P H, MCCLEAN S I A queueing model for bed-occupancy management and planning of hospitals[J]. Journal of the Operational Research Society, 2002, 53 (1): 19- 24
doi: 10.1057/palgrave/jors/2601244
[2]   OSORIO C, BIERLAIRE M An analytic finite capacity queueing network model capturing the propagation of congestion and blocking[J]. European Journal of Operational Research, 2009, 196 (3): 996- 1007
doi: 10.1016/j.ejor.2008.04.035
[3]   LEE H K, MUSA A J, BAIN P A, et al A queueing network model for analysis of patient transitions within hospitals[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16 (1): 6- 20
doi: 10.1109/TASE.2018.2793251
[4]   雷祎, 赵焱, 孙静 医联体模式下北京市海淀区社区居民双向转诊现状及影响因素分析[J]. 中国全科医学, 2019, 22 (25): 3049- 3054
LEI Yi, ZHAO Yan, SUN Jing Bi-directional referral situation and influencing factors in community-dwelling residents receiving healthcare services from a regional medical consortium[J]. Chinese General Practice, 2019, 22 (25): 3049- 3054
doi: 10.12114/j.issn.1007-9572.2019.00.391
[5]   匡莉 基于全科医疗的“社区首诊和双向转诊责任制”政策框架及要素[J]. 中国卫生政策研究, 2015, 8 (2): 19- 26
KUANG Li Policy framework and components for general practice-based gatekeeping and referral system[J]. Chinese Journal of Health Policy, 2015, 8 (2): 19- 26
doi: 10.3969/j.issn.1674-2982.2015.02.05
[6]   张莹 日本医疗机构双向转诊补偿制度的经验与启示[J]. 中国卫生经济, 2013, 32 (4): 93- 94
ZHANG Ying Experience and Enlightenment in the Construction of the Integrated Health Service System in Japan[J]. Chinese Health Economics, 2013, 32 (4): 93- 94
[7]   LI N, TENG D, KONG N Threshold control policy optimization for real-time reverse referral decision of Chinese comprehensive hospitals[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16 (1): 45- 60
doi: 10.1109/TASE.2018.2842772
[8]   LI N, PAN J, XIE X Q Operational decision making for a referral coordination alliance: when should patients be referred and where should they be referred to?[J]. Omega, 2020, 96: 102077
doi: 10.1016/j.omega.2019.06.003
[9]   LI N, KONG N, LI Q L, et al Evaluation of reverse referral partnership in a tiered hospital system: a queuing-based approach[J]. International Journal of Production Research, 2017, 55 (19): 5647- 5663
doi: 10.1080/00207543.2017.1327731
[10]   DENG Y W, LI N, JIANG Z B, et al Optimal Differential Subsidy Policy Design for a Workload-Imbalanced Outpatient Care Network[J]. Omega, 2020, 99: 102194
[11]   李忠萍, 王建军, 单巍 基于分级诊疗体系的下转决策及支付机制研究[J]. 系统工程理论与实践, 2019, 39 (8): 2126- 2137
LI Zhong-ping, WANG Jian-jun, SHAN Wei Downstream referral decisions and payments mechanism in a hierarchical healthcare system[J]. Systems Engineering-Theory and Practice, 2019, 39 (8): 2126- 2137
doi: 10.12011/1000-6788-2018-0055-12
[12]   张悦, 高照, 李娜 “守门人”医疗系统中的转诊协调机制[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2445- 2456
ZHANG Yue, GAO Zhao, LI Na Referral coordination mechanism of gatekeeper healthcare system[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2445- 2456
[13]   KELLA O, YECHIALI U Waiting times in the non-preemptive priority M/M/C queue[J]. Communications in Statistics. Stochastic Models, 1985, 1 (2): 257- 262
doi: 10.1080/15326348508807014
[14]   CHEN P S, LIN M H Development of simulation optimization methods for solving patient referral problems in the hospital-collaboration environment[J]. Journal of Biomedical Informatics, 2017, 73: 148- 158
doi: 10.1016/j.jbi.2017.08.004
[15]   高峰, 张连生 线性约束凸规划内点法及其修正算法[J]. 运筹学学报, 1998, 2 (1): 79- 94
GAO Feng, ZHANG Lian-sheng Interior point method and its modification algorithm for linear constrained convex programming[J]. Operations Research Transactions, 1998, 2 (1): 79- 94
[16]   NEUTS M F. Structural stochastic matrices of M/G/1 type and their applications [M]. New York: Marcel Dekker, Inc. 1989.
[17]   罗莉, 周希喆, 魏伟, 等 床位分类管理供给侧利益相关者分析: 以上海市某医疗集团骨科为例[J]. 中国医院, 2018, 22 (5): 38- 40
LUO Li, ZHOU Xi-zhe, WEI Wei, et al Stakeholders analysis of bed classification management supply side: a case study of orthopedics in a medical group in Shanghai[J]. Chinese Hospitals, 2018, 22 (5): 38- 40
[1] Zhi-hao CHENG,Xiang PAN,San-yuan ZHANG,Ya-nan REN. Three-dimensional dynamic surface alignment based on isometric random walk graph[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 135-142.
[2] Hui YU,Deng-feng CHAI. Vehicle extraction from remotely sensed images based on rectangle marked point processes[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1741-1748.
[3] ZHANG Man, SHI Shu-ming. Non-isometric crossover evolution algorithm of Markov chain for designing vehicle driving cycles[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1658-1666.
[4] MA Chun lai, SHAN Hong, LI Zhi, ZHU Li xin. New next place prediction method for mobile users[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2371-2379.
[5] SUN Zhi-lin, LU Ya-qian, HUANG Sai-hua. Prediction of port throughput based on Markov chain-time
series analysis
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1289-1294.
[6] WANG Fan,YANG Xiao-hu. Improvement of reassignment strategy in defects removal
based on queuing theory and simulation
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1553-1557.