|   [1] GANTI R, YE F, LEI H. Mobile crowdsensing:current state and future challenges[J]. IEEE Communications Magazine, 2011, 49(11):32-39. 
[2] NI J, ZHANG A, LIN X. Security, privacy, and fairness in fog-based vehicular crowdsensing[J]. IEEE Communications Magazine, 2017, 55(6):146-152. 
[3] GUO B, YU Z, ZHOU X, ZHANG D. From participatory sensing to Mobile Crowd Sensing[C]//2014 IEEE International Conference on Pervasive Computing and Communications Workshops. Budapest:IEEE, 2014:593-598. 
[4] WAN J, LIU J, SHAO Z, et al. Mobile crowd sensing for traffic prediction in internet of vehicles[J]. Sensors, 2016, 16(1):88. 
[5] LUDWING T, REUTER C, SIEBIGTEROTH T, et al. Crowdmonitor:mobile crowd sensing for assessing physical and digital activities of citizens during emergencies[C]//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Seoul:ACM, 2015:4083-4092. 
[6] GUO B, CHEN H, YU Z, et al. Fliermeet:cross-space public information reposting with mobile crowd sensing[J]. IEEE Transactions on Mobile Computing, 2015, 14(10):2020-2033. 
[7] XIAO M, WU J, HUANG L, et al. Online task assignment for crowdsensing in predictable mobile social networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(8):2306-2320. 
[8] XIONG H, ZHANG D, CHEN G, et al. icrowd:near-optimal task allocation for piggyback crowdsensing[J]. IEEE Transactions on Mobile Computing, 2016, 15(8):2010-2022. 
[9] ZHENG Z, WU F, GAO X, et al. A budget feasible incentive mechanism for weighted coverage maximization in mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2017, 16(9):2392-2407. 
[10] ZHENG L, CHEN L. Maximizing acceptance in rejection-aware spatial crowdsourcing[C]//2017 IEEE 33rd International Conference on Data Engineering (ICDE). San Diego:IEEE, 2017:71-78. 
[11] PERSAUD A, OBRIEN S. Quality and acceptance of crowdsourced translation of web content[J]. International Journal of Technology and Human Interaction, 2017, 13(1):100-115. 
[12] LIU Y, GUO B, WANG Y, et al. Taskme:multi-task allocation in mobile crowd sensing[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Heidelberg:ACM, 2016:403-414. 
[13] HE S, SHIN D, ZHANG J, et al. Near-optimal allocation algorithms for location-dependent tasks in crowdsensing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4):3392-3405. 
[14] WANG E, YANG Y, WU J, et al. An efficient prediction-based user recruitment for mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2018, 17(1):16-28. 
[15] CHEUNG M, HOU F, HUANG J. Make a difference:diversity-driven social mobile crowdsensing[C]//2017 IEEE International Conference on Computer Communications. Atlanta:IEEE, 2017:1-9. 
[16] LANE N, CHOU Y, ZHOU L, et al. Piggyback crowdSensing:energy efficient crowdsourcing of mobile sensor data by exploiting smartphone app opportunities[C]//Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems. Roma:ACM, 2013:1-14.  |