Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (9): 1695-1703    DOI: 10.3785/j.issn.1008-973X.2017.09.003
Civil and Traffic Engineering     
Bearing performance of stainless steel bolted shear connection for aluminum alloy members at elevated temperature
GUO Xiao-nong, YU Meng-tong, LIANG Shui-ping, LI Jian-bao
Department of Building Engineering, Tongji University, Shanghai, 200092, China
Download:   PDF(6637KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Load-bearing capacity tests of 10 stainless steel bolted joints for aluminum alloy members under elevated temperatures were carried out, considering the size of the core plate, cover plate and the bolt. The failure mode, deformation performance and ultimate capacity of the connection were derived from the test, which were performed under 20, 200 and 300℃. As results, temperature has influence on the failure mode of the shear connection. Corresponding numerical models were established using ABAQUS, and the analytical results agree well with the test results. The contribution of temperature, plate thickness, plate width, bolt diameter and end distance to the bearing capacity were further studied with the verified FEM models. The calculation formula for high temperature bearing capacity of the stainless steel bolted joint for aluminum alloy members was derived, and verified with the test results.



Received: 16 September 2016      Published: 25 August 2017
CLC:  TU395  
Cite this article:

GUO Xiao-nong, YU Meng-tong, LIANG Shui-ping, LI Jian-bao. Bearing performance of stainless steel bolted shear connection for aluminum alloy members at elevated temperature. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1695-1703.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.09.003     OR     http://www.zjujournals.com/eng/Y2017/V51/I9/1695


铝合金板件不锈钢螺栓连接的高温承载性能分析

完成10个高温下铝合金板件不锈钢螺栓双剪连接试验,考虑芯板尺寸、盖板尺寸和螺栓规格的影响,试验温度分别为20、200和300℃,研究抗剪连接的破坏模式、变形性能和极限承载力.试验结果表明:温度会影响抗剪连接的破坏模式.采用ABAQUS建立数值分析模型,得到的数值分析结果与试验结果吻合良好.进一步研究温度、芯板宽度、芯板厚度、螺栓直径和螺栓端距等参数对连接承载力的影响,拟合得出铝合金板件不锈钢螺栓抗剪的高温承载力计算公式,并将拟合公式与试验结果进行对比,验证公式的有效性.

[1] 杨联萍,韦申,张其林.铝合金空间网格结构研究现状及关键问题[J].建筑结构学报,2013,34(2):1-19. YANG Lian-ping, WEI Shen, ZHANG Qi-lin. Aluminum reticulated spatial structures:state of the art and key issues[J]. Journal of Building Structures, 2013,34(2):1-19.
[2] 杨联萍,邱枕戈.铝合金结构在上海地区的应用[J].建筑钢结构进展,2008,10(1):53-57. YANG Lian-ping, QIU Zhen-ge. Application of aluminum alloy structures in Shanghai[J]. Progress in Steel Building Structures, 2008, 10(1):53-57.
[3] 沈祖炎,郭小农,李元齐.铝合金结构研究现状简述[J].建筑结构学报,2007,28(6):100-109. SHEN Zu-yan, GUO Xiao-nong, LI Yuan-qi. State of the arts of research on aluminum alloy structures[J]. Journal of Building Structures, 2007, 28(6):100-109.
[4] 郭小农,邱丽秋,徐晗,等.铝合金受剪螺栓连接孔壁承压强度[J].同济大学学报:自然科学版,2014,42(1):36-43. GUO Xiao-nong, QIU Li-qiu, XU Han, et al. Bearing strength at bolt holes of aluminum alloy[J]. Journal of Tongji University:Natural Science, 2014, 42(1):36-43.
[5] 张贵祥,石永久,王元清,等.铝合金构件螺栓连接承压性能分析与设计方法[J].桂林工学院学报,2006,26(4):501-505. ZHANG Gui-xiang, SHI Yong-jiu, WANG Yuan-qing, et al. Analysis and design of bearing strength of bolted connection in aluminum alloy[J]. Journal of Guilin University of Technology, 2006, 26(4):501-505.
[6] 王元清,袁焕鑫,石永久,等.铝合金板件螺栓连接承压强度试验与计算方法[J].四川大学学报:工程科学版,2011,43(5):203-208. WANG Yuan-qing, YUAN Huan-xin, SHI Yong-jiu, et al. Experiments and computational method on bearing capacity of bolted joint for aluminum alloy sheets[J]. Journal of Sichuan University:Engineering Science Edition, 2011, 43(5):203-208.
[7] CEN. EN 1999-1-1:2007 Eurocode 9:Design of aluminium structures. Part 1-1:general structuralrules[S]. Brussels:European Committee for Standardization, 2007.
[8] 中华人民共和国建设部.铝合金结构设计规范:GB50429-2007[S].北京:中国计划出版社, 2008.
[9] 郭小农,梁水平,蒋首超.铝合金构件不锈钢螺栓连接高温性能研究综述[J].建筑钢结构进展,2015,17(5):18-23. GUO Xiao-nong, LIANG Shui-ping, JIANG Shou-chao. Research review on the mechanical behavior of stainless steel bolted joint for aluminum alloy members at elevated temperatures[J]. Progress in Steel Building Structures, 2015, 17(5):18-23.
[10] 郭小农,梁水平,蒋首超.铝合金板件不锈钢螺栓连接的高温承载性能数值研究[J].工业建筑,2015,45(增):1617-1624. GUO Xiao-nong, LIANG Shui-ping, JIANG Shou-chao. Numerical study on bearing performance of stainless steel bolted shear connection for aluminum alloy members at elevated temperature[J]. Industrial Construction, 2015,45(Suppl.):1617-1624.
[11] CAI Y, YOUNG B. Behavior of cold-formed stainless steel single shear bolted connections at elevated temperatures[J]. Thin-Walled Structures, 2014, 75(2):63-75.
[12] CAI Y, YOUNG B. High temperature tests of cold-formed stainless steel double shear bolted connections[J]. Journal of Constructional Steel Research, 2015, 104(104):49-63.
[13] CEN. EN 1999-1-2:2007 Eurocode 9:Design of aluminum structures. Part 1-2:General rules:structural fire design[S]. Brussels:European Committee for Standardization, 2007.
[14] 中华人民共和国国家质量监督检验检疫总局.金属材料室温拉伸试验方法:GB/T228-2002[S]. 北京:中国建筑工业出版社, 2002.
[15] CEN. EN 1993-1-2:2005 Eurocode 3:Design of Steel Structures. Part 1-2:Structural fire design[S]. Brussels:European Committee for Standardization, 2005.
[16] CEN. EN 1993-1-4:2006 Eurocode 3:Design of Steel structures. Part 1-4:General Rules-Supplementary Rules for Stainless Steels[S]. Brussels:European Committee for Standardization, 2006.
[17] AISC. Load and resistance factor design specification for structural steel buildings[S]. Chicago:American Institute of Steel Construction, 1993.

No related articles found!