Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (9): 1712-1719    DOI: 10.3785/j.issn.1008-973X.2017.09.005
Civil and Traffic Engineering     
Frequency-domain fatigue assessment of support structure for offshore wind turbine
QIN Pei-jiang, MA Yong-liang, HAN Chao-shuai, QU Xian-qiang
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Download:   PDF(1315KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A frequency-domain fatigue assessment method was proposed in view of the fatigue problem of support structure in offshore wind turbine under combination of wind and wave loads. The combination method power spectrum density function of hot spot stress under combination of wind and wave loads was presented on the basis of wind-wave scatter diagram. A linearization method for the first principal stress under multi-loads was developed. The power spectrum density function calculation method of hot spot stress under wind load was obtained by using the multi-input linear system theory. Different spectral methods for predicting the fatigue damage were compared. Finally, the accuracy of the proposed method was verified by taking a 3 MW Jacket type support structure as an example. The power spectrum density functions of hot spot stress under wind load are in good agreement with the time domain simulations results. The proposed method is convenient and effective, which can be used for the fast fatigue assessment of support structure.



Received: 29 September 2016      Published: 25 August 2017
CLC:  P751  
Cite this article:

QIN Pei-jiang, MA Yong-liang, HAN Chao-shuai, QU Xian-qiang. Frequency-domain fatigue assessment of support structure for offshore wind turbine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1712-1719.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.09.005     OR     http://www.zjujournals.com/eng/Y2017/V51/I9/1712


海上风机支撑结构的频域疲劳评估方法研究

针对风浪联合作用下海上风机支撑结构的疲劳问题,提出一种频域疲劳评估方法.基于风浪散布图,提出风浪联合作用下疲劳热点应力功率谱密度函数的组合方法,并提出多载荷联合作用下最大主应力线性化方法.利用多输入线性系统理论,得到风载荷作用下热点应力功率谱密度函数的计算方法,并对各种谱疲劳损伤计算方法进行对比分析.以3 MW导管架式海上风机支撑结构为研究对象,验证所提方法的计算精度,风载荷作用下热点应力功率谱密度函数计算结果与时域模拟结果吻合较好.该方法简便有效,可用于风机支撑结构疲劳的快速评估.

[1] 康海贵,田茂金,龙丽吉,等.基于谱分析的海上风机支撑结构疲劳分析[J].可再生能源,2013,31(7):41-44. KANG Hai-gui, TIAN Mao-jin, LONG Li-ji, et al. Spectral-based fatigue analysis of a support structure for offshore wind turbines[J]. Renewable Energy Resources, 2013, 31(7):41-44.
[2] 莫继华,何炎平,李勇刚,等.近海风电机组单桩式支撑结构疲劳分析[J].上海交通大学学报,2011,45(4):565-569. MO Ji-hua, HE Yan-ping, LI Yong-gang, et al. Fatigue analysis of offshore wind turbine mono-pile structure[J]. Journal of Shanghai Jiaotong University, 2011, 45(4):565-569.
[3] HUANG W B, MOAN T. A practical formulation for evaluating combined fatigue damage from high and low frequency loads[J]. Journal of Offshore Mechanics and Arctic Engineering, 2007, 129(1):1-8.
[4] 李红涛,李林斌.海上风机支撑结构设计分析[J].海洋工程,2011,29(4):74-80. LI Hong-tao, LI Lin-bin. Design analysis for support structure of offshore wind turbine[J]. Ocean Engineering, 2011, 29(4):74-80.
[5] TEMPLE J V D. Design of support structures for offshore wind turbines[D]. Delft:Delft University of Technology, 2006.
[6] 马永亮,曲先强,沙胜义,等.风浪联合作用下近海风机塔架结构疲劳评估方法[J].大连海事大学学报,2012, 38(3):36-40. MA Yong-liang, QU Xian-qiang, SHA Sheng-yi, et al. Fatigue assessment method of the offshore wind turbine tower under the function of combined wind and wave[J]. Journal of Dalian Maritime University, 2012,38(3):36-40.
[7] 盛振国,任慧龙,甄春博,等.基于时域载荷的海上风机基础结构疲劳分析[J].华中科技大学学报:自然科学版,2014,42(4):96-100. SHENG Zhen-guo, REN Hui-long, ZHEN Chun-bo, et al. Fatigue analysis for offshore wind turbine foundational structures based on loads in time domain[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2014, 42(4):96-100.
[8] KUHN M. Dynamics and design optimization of offshore wind energy conversion systems[D]. Delft:Delft University of Technology, 2001.
[9] 韩超帅.导管架式海上风机支撑结构疲劳性能研究[D].哈尔滨:哈尔滨工程大学,2013. HAN Chao-shuai. Research for fatigue performance of jacket offshore wind turbine support structure[D]. Harbin:Harbin Engineering University, 2013.
[10] Det Norske Veritas. Design of offshore wind turbine structures:DNV-OS-J101[S]. Oslo:Det Norske Veritas, 2004.
[11] Det Norske Veritas. Recommended practice riser fatigue:DNV-RP-F204[S]. Oslo:Det Norske Veritas, 2010.
[12] American Bureau of Shipping. Commentary on the guide for the fatigue assessment of offshore structures[S]. Houston:American Bureau of Shipping, 2003.
[13] JIAO G, MOAN T. Probabilistic analysis of fatigue due to Gaussian load processes[J]. Probabilistic Engineering Mechanics, 1990, 5(2):76-83.
[14] 中国船级社.海上固定平台入级与建造规范[S].北京:中国船级社,1992.
[15] International Electrotechnical Commission. Design requirements for offshore wind turbines:IEC 61400-3[S]. London:International Electrotechnical Commission, 2009.
[16] NEWLAND D E. An Introduction to Random Vibrations Spectral and Wavelet Analysis[M]. New York:Dover Publications Inc, 2005:71-73.
[17] DIRLIK T. Application of computers to fatigue analysis[D]. Coventry:University of Warwick, 1985.

[1] XU Yue, XU Zhi-hai, FENG Hua-jun, LI Qi, CHEN Yue-ting, XU Yi, ZHAO Hong-bo. Registration and stitching optimization for two-scene-type remote sensing image[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 107-114.
[2] SU Hui, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Restoration method of TDI remote sensing image based onoptimization of numerical fidelity term[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 674-679.
[3] FU Yong-yong, WANG Xu-hang, DENG Jin-song, YE Zi-ran, ZHOU Meng-meng, YOU Shu-cheng, GUAN Tao. Extraction of water information in complex water-net plain with Chinese GF-2 remotely sensed images[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2474-2480.
[4] ZHAO Liao-ying, CHEN Xiao-fen, LI Xiao-run. Hyperspectral change detection based on change vector analysis and spectral unmixing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1912-1919.