[1] BLEI D M, JOHN D L. Dynamic topic models [C]∥Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania: ACM, 2006: 113-120.
[2] WANG C, BLEI D M, HECKERMAN D. Continuous time dynamic topic models [C]∥Uncertainty in Artificial Intelligence. Helsinki, Finland: AUAI Press, 2008:579-586.
[3] WANG X, ANDREW M. Topics over time: a nonmarkov continuoustime model of topical trends [C]∥Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, PA: ACM, 2006: 424-433.
[4] MAIRAL J, FRANCIS B, JEAN P, et al. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research. 2010, 11: 19-60.
[5] SAHA A, VIKAS S. Learning evolving and emerging topics in social media: a dynamic nmf approach with temporal regularization [C]∥Proceedings of the Fifth ACM International Conference on Web Search and Data mining. Seattle, Washington: ACM, 2012: 693-702.
[6] VACA C K, AMIN M, ALEJANDRO J, MARCO S. A Timebased collective factorization for topic discovery and monitoring in news [C]∥Proceedings of the 23rd International Conference on World Wide Web. Seoul: ACM, 2014: 527-538.
[7] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation [J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[8] THOMAS H. Probabilistic latent semantic analysis [C]∥Uncertainty in artificial intelligence. Stockholm, Sweden: Morgan Kaufmann, 1999: 289-296.
[9] GAUSSIER E, GOUTTE C. Relation between PLSA and NMF and implications [C]∥Acm Sigir Conference on Research & Development in Information Retrieval. Salvador, Bahia, Brazil: ACM, 2005: 601-602.
[10] KUANG D, HAESUN P. Fast rank2 nonnegative matrix factorization for hierarchical document clustering [C]∥Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. Chicago, Illinois: ACM,2013: 739-747.
[11] JENATTON R, MAIRAL J, OBOZINSKI G, et al.. Proximal methods for sparse hierarchical dictionary learning [C]∥International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010: 487-494.
[12] 景丽萍,朱岩,于剑.层次非负矩阵分解及在文本聚类中的应用[J].计算机科学与探索,2011, 5(10): 904-913.
JING Liping, ZHU Yan, YU jian. Hierarchical nonnegative matrix factorization for text clustering [J]. Journal of Frontiers of Computer Science & Technology, 2011, 5(10): 904-913.
[13] BLEI D M, GRIFFITHS T L, JORDAN M I, et al. Hierarchical topic models and the nested chinese restaurant process [C]∥Proceedings of the 17th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: MIT Press, 2003: 17-24.
[14] HU L, LI JZ, ZHANG J, et al. oHETM: an online hierarchical entity topic model for news streams [C]∥ Proceedings of the 19th PacificAsia Conference on Knowledge Discovery and Data Mining. Ho Chi Minh City, Vietnam: Springer, 2015: 696-707.
[15] CAI D, MEI Q, HAN J, et al. Modeling hidden topics on document manifold [C]∥Proceedings of the 17th ACM conference on Information and knowledge management. Napa Valley, California: ACM, 2008: 911-920.
[16] CICHOCKI A, ZDUNEK R, PHAN A H, et al. Nonnegative matrix and tensor factorizations: applications to exploratory multiway data analysis and blind source separation [M]. Hoboken, New Jersey. John Wiley & Sons, 2009: 131-139.
[17] RITOV Y, BICKEL P J, TSYBAKOV A B. Simultaneous analysis of lasso and dantzig selector [J]. Annals of Statistics, 2009, 37(4):1705-1732. |