Please wait a minute...
J4  2013, Vol. 47 Issue (11): 1987-1991    DOI: 10.3785/j.issn.1008-973X.2013.11.016
Study on thermal oxidation characteristics and kinetics of boron-based fuel-rich in different atmosphere
ZHOU Hua, ZHANG Yan-wei,LI He-ping, WANG Yang, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China      
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


The influence of different amorphous on the thermal oxidation characteristics of boron-based fuel-rich was studied by TG-DTG and DSC experiments. Oxidative induction temperature of the fuel under different atmosphere was obtained by TG-DTG tangent method. The experiment results show that the ignition temperature of fuel were not affected by different amorphous at 50~650℃, Increasing the oxygen concentration can improve the heat release of oxidation. Oxidative induction temperature of boron in the fuel in air, O2 and CO2 is 705.3,710.8℃ and 723.4 ℃ respectively at 650~1 100℃, the fuel generated little BN in N2, and didnt react in Ar. Increasing the oxygen concentration can reduce the oxidative induction temperature of boron in the fuel, speed up the combustion reaction and improve the efficiency. The single-curve model of Satava-Sestak integral method was adopted to calculate the kinetic parameters of the thermal reaction of fuel under different atmosphere at 650~1 100℃.

Published: 01 November 2013
CLC:  O 643.1  
Cite this article:

ZHOU Hua, ZHANG Yan-wei,LI He-ping, WANG Yang, LIU Jian-zhong, ZHOU Jun-hu, CEN. Study on thermal oxidation characteristics and kinetics of boron-based fuel-rich in different atmosphere. J4, 2013, 47(11): 1987-1991.

URL:     OR


通过高温热重(TG-DTG)分析和常压差示扫描量热(DSC)等分析手段,研究不同气氛对含硼燃料热氧化特性的影响.利用TG-DTG切线法得到不同气氛下含硼燃料的着起始氧化温度温度,分析实验结果表明,在50~650 ℃温度区间,燃料的着火温度不受气氛影响,提高氧浓度有助于促进燃料反应放热.在650~1 100 ℃温度区间,在O2、空气和CO2气氛下含硼燃料中硼的起始氧化温度温度分别为705.3、710.8、723.4 ℃,在N2下增重非常少,与Ar不发生反应;提高O2浓度有利于降低含硼燃料中硼的起始氧化温度,加快氧化反应,提高含硼燃料的反应效率.采用Satava-Sestak 积分法模型计算燃料在高温段(650~1 100 ℃)不同气氛下的化学反应动力学参数.

[1] 王宁飞, 关大林, 范红杰. 硼颗粒点火和燃烧研究进展[J]. 含能材料, 2001,9(2) : 86-89.
WANG Ning-fei, GUAN Da-lin, FAN Hong-jie. Development of boron particles ignition and combustion[J]. Energetic Materials, 2001,9(2) : 86-89.
[2]毛成立, 李葆萱, 胡松启,等. 热空气中硼粒子点火模型研究综述[J]. 推进技术, 2001,22(1): 6-9.
MAO Cheng-li, LI Bao-xuan, HU Song-qi, et al. Overview of models of boron particle ignition in hot air[J]. Journal of Propulsion Technology, 2001,22(1): 6-9.
[3]陈超,王英红,潘匡志,等. 硼粉热特性研究[J]. 固体火箭技术, 2009, 32(6):663-666.
CHEN Chao, WANG Ying-hong, PAN Kuang-zhi, et al. The research of thermal property of boron particles[J]. Journal of Solid Rocket Technology, 2009, 32(6): 663-666.
[4] 王天放, 李疏芬. 不同环境气氛中硼粒子点火特性研究[J]. 飞航导弹, 2004,(1): 49-52.
WANG Tian-fang, LI Shu-feng. Study on Ignition Characteristics of boron particle in different atmosphere[J]. Winged Missiles Journal, 2004,(1): 4952.
[5] JAIN A, ANTHONYSAMY S, ANANTHASIVAN K, et  al. Studies on the ignition behavior of boron powder [J]. Thermochimica Acta, 2010,500: 6368.
[6]YOSHIDA T, YUASA S. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream[J]. Incineration, Combustion of Solid Wastes and Metals. 2000,(28): 2735-2741.
[7] ULAS A, KUO K K. Ignition and combustion of boron particles in fluorine-containing environments \
[J\]. Combustion and Flame, 2001,127: 19351957.
[8]庞维强, 张教强, 张琼方,等. 硼粉的包覆及含包覆硼燃料燃烧残渣成分分析[J]. 固体火箭技术, 2006, 29(3): 204-208.
PANG Wei-qiang, ZHANG Jiao-qiang, ZHANG Qiong-fang, et al. Coating of boron particles and combustion residue analysis of boron-based solid propellant [J].Journal of Solid Rocket Technology, 2006, 29(3): 204-208.
[9] 毛根旺,吴婉娥. HTPB_镁铝合金含量对含硼富燃燃料压强指数影响[J]. 机械科学与技术, 2008, 27(1): 5-8.
MAO Gen-wang,WU Wan-e. Influence of HTPB/MA content on pressure exponent of boron-based fuel-rich propellant [J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(1): 58.
[10] 李则新(译). 硼[M]. 北京:中国工业出版社, 1964:1.
[11] KING M K. Boron particle ignition in hot gas streams [J]. Combustion Science and Technology, 1974,8: 255-273.
[12]KING M K. Ignition and combustion of boron particles and clouds [J]. Journal of Spacecraft and Rockets, 1982,19: 294-306.
[13]KING M K. Boron ignition and combustion in air-augmented rocket afterburners[J].Combustion Science and Technology, 1972, 5(4): 155.
[14]陈镜泓, 李传儒. 热分析及其应用[M]. 北京: 科学出版社, 1985.
[15]沈兴. 差热, 热重分析与非等温固相反应动力学[M]. 北京: 冶金工业出版社, 1995: 104.
[16]胡荣祖, 史启祯. 热分析动力学[M].北京:科学出版社, 2001∶55.
[17]ZHANG J J, GE L G, ZHANG X L. Thermal decomposition kinetics of the Zn(Ⅱ) complex with norfloxacin in static air Atmosphere. [J].Journal of Thermal Analysis and Calorimetry, 1999,58:269-278.
[18]高东磊, 张炜, 朱慧,等. 包覆及团聚对硼燃烧的影响[J]. 含能材料,2007,15(4):378-381.
GAO Dong-lei, ZHANG Hui, ZHU Hui, et al. Effect of coating and agglomerating on combustion of boron[J]. Chinese Journal of Energetic Materials,2007,15(4):378-381.

No related articles found!