Please wait a minute...
J4  2013, Vol. 47 Issue (5): 906-911    DOI: 10.3785/j.issn.1008-973X.2013.05.025
Feature pruning based AdaBoost and its application in face detection
MENG Zi-bo, JIANG Hong, CHEN Jing, YUAN Bo, WANG Li-qiang
State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


The AdaBoost algorithm is highly computational consuming and has high false positive rate. To deal with these problems, an efficient detection method based on AdaBoost,which consists of a Feature Pruning based AdaBoost (FPAdaBoost) algorithm and a confirmation and skipping detection scheme (CSDS), is presented in this paper. FPAdaBoost cuts off features at a certain cutting coefficient according to the classification error in each iteration of training process, which effectively speeds up the learning process and greatly reduces the computational cost. And CSDS employs verification and confirmation scheme in the conventional scanning process, which effectively eliminates false positive detections. The performance of proposed detection method was tested in face detection using the MIT-CBCL training set and the MIT+CMU test set. The results show that, compared with traditional Adaboost detection method, the training time of FPAdaBoost dramatically decreases without suffering a decline in classification capability, meanwhile the false positive rate is significantly reduced due to employing CSDS in the scanning process.

Published: 01 May 2013
CLC:  TP 391.4  
Cite this article:

MENG Zi-bo, JIANG Hong, CHEN Jing, YUAN Bo, WANG Li-qiang. Feature pruning based AdaBoost and its application in face detection. J4, 2013, 47(5): 906-911.

URL:     OR


针对AdaBoost算法存在训练消耗大并且误检率较高的问题,提出一种基于AdaBoost的高效检测方法.它主要包含一种基于特征剪裁的AdaBoost算法(FPAdaBoost)和一种新的检测扫描方法——确认和跳过检测机制(CSDS).FPAdaBoost算法在每一轮训练中会根据分类误差剪裁掉一部分特征,提高算法的训练速度;而CSDS检测方法在传统的检测方法基础上引入验证和确认机制,在保证检测率的条件下有效控制误检的发生.在MIT CBCL训练集和MIT+CMU检测集上对提出的方法进行验证,结果表明,FPAdaBoost算法相比原始AdaBoost算法在性能上没有明显退化,但却大大改善了训练速度,同时CSDS检测机制的引入极大地降低误检率,提高检测结果的可靠性.

[1] FREUND Y, SCHAPIRE R E. A short introduction to boosting [J]. Journal of Japanese Society for Artificial Intelligence, 1999,14(5):771-780.
[2] SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin: a new explanation for the effectiveness of voting methods [J]. The Annals of Statistics, 1998,26(5):1651-1686.
[3] HUANG Chang, AI Hai-zhou, LI Yuan, et al, Vector boosting for rotation invariant multi-view face detection [C]∥Proceedings of the Tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005: 446-453.
[4]  MIDDENDORF M, KUNDAJE A, WIGGINS C, et al. Predicting genetic regulatory response using classification [J]. Bioinformatics, 2004,20(1):232-240.
[5]  OPELT A, PINZ A, FUSSENEGGER M, et al. Generic object recognition with boosting [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(3):416-431.
[6]  TORRALBA A, MURPHY K P, FREEMAN W T, Sharing features: efficient boosting procedures for multiclass object detection [C]∥ Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2004: 762-769.
[7]  VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [C]∥ Proceedings of IEEE Computer Society of Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001: 511-518.
[8]  VIOLA P, JONES M. Robust real-time face detection [J]. International Journal of Computer Vision, 2004,57(2):137-154.
[9]  FRIEDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting [J]. The Annals of Statistics, 2000,28(2):337-407.
[10]  贾慧星,章毓晋.基于动态权重剪裁的快速Adaboost训练算法[J].计算机学报,2009,32(2):336-341.
JIA Hui-xing, ZHANG Yu-jin. Fast AdaBoost training algorithm by dynamic weight trimming [J]. Chinese Journal of Computers, 2009,32(2):336341.
[11]  VIOLA P, JONES M. Fast and robust classification using asymmetric AdaBoost and a detector cascade [C]∥ Neural Information Processing Systems. Vancouver: NIPS, 2002: 1311-1318.
[12]  FLEURET F, GERMAN D. Stationary features and cat detection [J]. Journal of Machine Learning Research, 2008,9:2549-2577.
[13]  ROWLEY H A, BALUJA S, KANADE T. Neural network-based face detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(1):22-38.

[1] XU Song,SUN Xiu-xia,HE Yan. Iterative method of camera distortion calibration utilizing lines-imaging characteristics[J]. J4, 2014, 48(3): 404-413.
[2] . Augmented reality registration from nature features ased on planar color distribution[J]. J4, 2013, 47(12): 2243-2252.
[3] YANG Bing, XU Duan-qing, YANG Xin, ZHAO Lei, TANG Da-wei. Painting image classification based on aesthetic style similarity rule[J]. J4, 2013, 47(8): 1486-1492.
[4] YANG Bang-hua, HE Mei-yan, LIU Li, LU Wen-yu. EEG classification based on batch incremental SVM in
brain computer interfaces
[J]. J4, 2013, 47(8): 1431-1436.
[5] LOU Xiao-jun, SUN Yu-xuan, LIU Hai-tao. Clustering boundary over-sampling classification method for imbalanced data sets[J]. J4, 2013, 47(6): 944-950.
[6] HE Zhi-xiang, DING Xiao-qing, FANG Chi, WEN Di. Multiview face detection based on LBP and CCS-AdaBoost[J]. J4, 2013, 47(4): 622-629.
[7] LIU Xiao-fang,YE Xiu-zi ,ZHANG San-yuan ,ZHANG Yin. Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image
[J]. J4, 2012, 46(11): 2035-2043.
[8] ZHANG Yuan-hui,WEI Wei. Online angular velocity estimated visual measurement for ping pong robot[J]. J4, 2012, 46(7): 1320-1326.
[9] SHI Jin-he, SHENG Ji-zhong, WANG Pan. Feature extraction and classification of four-class
motor imagery EEG data
[J]. J4, 2012, 46(2): 338-344.
[10] ZHANG Da-wei, ZHU Shan-an. Face recognition based kernel neighborhood preserving
discriminant embedding
[J]. J4, 2011, 45(10): 1842-1847.
[11] SHU Zhen-yu, WANG Guo-zhao. Fast mesh segmentation algorithm based on tensor voting[J]. J4, 2011, 45(6): 999-1005.
[12] Xu Shu-chang, ZHANG San-yuan, ZHANG Yin. Robust algorithm for extracting skin pigment concentration
from color image
[J]. J4, 2011, 45(2): 253-258.
[13] SHE Jing-Shan, MENG Meng, LUO Zhi-Ceng, MA Yu-Liang. Electromyography movement recognition of lower limb based on multiple kernel learning[J]. J4, 2010, 44(7): 1292-1297.
[14] XUE Ling-Yun, DUAN Hui-Long, XIANG Hua-Qi, FAN Ying-Le. Image restoration based on stochastic resonance mechanism of FitzHugh-Nagumo neuron[J]. J4, 2010, 44(6): 1103-1107.
[15] ZHANG Yuan-Hui, HUI Wei, YU Dan. Kalman tracking algorithm based on realtime vision of pingpong robot[J]. J4, 2009, 43(09): 1580-1584.