Please wait a minute...
J4  2012, Vol. 46 Issue (4): 749-755    DOI: 10.3785/j.issn.1008-973X.2012.04.026
    
Simulation and analysis of fixed-bed reactor for
hydrochlorination of acetylene
CHEN Jing, CHENG Dang-guo, CHEN Feng-qiu
Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A two-dimensional pseudo-homogeneous dispersion model was employed according to the reaction kinetics and analysis of commercial reactor in order to describe and evaluate the operation conditions of industrial fixed-bed reactor for hydrochlorination of acetylene. The Crank-Nicholson method was used with experiential data from pilot-scale reactor in order to solve the equations. Results showed that the simulation results accorded well with the industrial data. Simulation results showed that the space velocity of acetylene and catalyst performance greatly influenced the distribution of reactor temperature and products when the catalyst activity was low. An expression of the optimum space velocity of acetylene can be deduced by considering the relationship between the space velocity of acetylene and the catalyst activity. The tube wall temperature 98 ℃ and tube size 51 mm×3.5 mm is rational at present use by simulation.



Published: 17 May 2012
CLC:  TQ 021.8  
Cite this article:

CHEN Jing, CHENG Dang-guo, CHEN Feng-qiu. Simulation and analysis of fixed-bed reactor for
hydrochlorination of acetylene. J4, 2012, 46(4): 749-755.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.04.026     OR     http://www.zjujournals.com/eng/Y2012/V46/I4/749


乙炔氢氯化固定床反应器的模拟分析

根据对乙炔氢氯化反应动力学以及工业装置实际运行状况的分析,建立固定床反应器拟均相二维有效扩散数学模型.结合中试经验数据,采用Crank-Nicholson方法求解方程并对工业固定床反应器进行模拟计算.模拟结果显示,计算所得固定床内温度和转化率分布与工业数据相符.利用模型计算结果分析发现,当催化剂活性水平较低时,乙炔空速和催化剂活性对反应结果有较大影响,将两者进行关联,可以建立不同催化剂活性水平下的最佳乙炔空速计算公式.通过对工业条件下不同管壁温度和不同反应管尺寸的模拟分析,可知现在工业上设置的管壁温度98 ℃和反应管尺寸51 mm×3.5 mm都是合理的.

[1] FLID M R. Vinyl chloride technology: present and future [J]. Catalysis in Industry, 2009, 1(4): 285-293.
[2] SAEKI Y, EMURA T. Technical progresses for PVC production [J]. Progress in Polymer Science, 2002, 27(10): 2055-2131.
[3] 邴涓林,李承志. 2007年中国PVC产业动态与发展分析[J]. 聚氯乙烯, 2008, 36(7): 1-5.
BING Juanlin, LI Chengzhi. Analysis on the situation and development of PVC industry in China in the year 2007 [J]. Polyvinyl Chloride, 2008, 36(7): 1-5.
[4] 邴涓林,李承志. 2008年中国PVC产业动态与分析[J]. 聚氯乙烯,2009, 37(5): 1-14.
BING Juanlin, LI Chengzhi. Analysis on the situation of PVC industry in China in the year 2008 [J]. Polyvinyl Chloride, 2009, 37(5): 1-14.
[5] 吴玉初,刘炼钦,杨朝富. 天然气制乙炔生产PVC的可行性研究[J]. 聚氯乙烯,2010, 38(1): 5-13.
WU Yuchu, LIU Lianqin, YANG Chaofu. A feasibility study on production of PVC from acetylene prepared from natural gas [J]. Polyvinyl Chloride, 2010, 38(1): 5-13.
[6] WEI X B, SHI H B, QIAN W Z, et al. Gasphase catalytic hydrochlorination of acetylene in a twostage fluidizedbed reactor [J]. Industrial and Engineering Chemistry Research, 2009, 48 (1): 128-133.
[7] 李春华,周军,于信洋,等.3000t/a氯乙烯循环流化床转化器运行小结[J]. 聚氯乙烯,2008, 36 (1): 35-37.
LI Chunhua, ZHOU Jun, YU Xinyang, et al. Summary on the running of converter with circulating fluidized bed for the synthesis of 3 000 t/a [J]. Ployvinyl Chloride. 2008, 36 (1): 35-37.
[8] 金戈.国内外氯碱行业生产现状和发展分析[J].中国石油和化工经济分析,2007(4): 46-51.
JIN Ge. Analysis on the situation of chloralkali industry in the world [J]. Petroleum and Chemical, 2007(4): 46-51.
[9] 沈庆扬,陈秉辉.乙炔法合成氯乙烯固定床反应器的数学模拟和工况分析[J]. 高校化学工程学报,1994, 8(4): 351-359.
SHEN Qingyang, CHEN Binghui. Mathematic simulation and operation analysis of the fixed bed reactor for hydrochlorination of acetylene [J]. Journal of Chemical Engineering of Chinese Universities, 1994, 8(4): 351-359.
[10] 戴擎镰,徐根良,沈庆扬,等. 在HgCl2(工业)活性炭催化剂上乙炔氯化氢反应动力学和失活动力学的研究[J].化学反应工程与工艺,1985,1(1/2): 1-13.
DAI Qinglian, XU Genliang, SHEN Qingyang, et al. Study on kinetics of acetylene hydrochlorination and catalyst deactivation on industrial HgCl2carbon catalyst [J]. Chemical Reaction Engineering and Technology, 1985, 1(1/2): 1-13.
[11] 卢焕章,毕兰云,俉章平,等. 石油化工基础数据手册[M]. 北京:化学工业出版社,1982: 15-70.
[12] 陈甘棠. 化学反应工程[M]. 北京:化学工业出版社,2008: 164.
[13] ERGUN S. Fluid flow through packed columns [J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
[14] REDDY R K, JOSHI J B. CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects [J]. Particuology, 2010, 8(1): 37-43.

[1] KONG Xiang-dong, TAO Li-li, ZHONG Wei-min, CHENG Hui, QIAN Feng. Effects of coal composition on performance of  entrained-flow coal-water slurry gasifier[J]. J4, 2013, 47(9): 1685-1689.
[2] LIAO Zu-wei, XUAN Ji, RONG Gang, ZHANG Jian-dong. Fuzzy programming based scheduling of steam power system in
petrochemical complex
[J]. J4, 2011, 45(4): 621-626.
[3] LIN Ge-Hong, HE Yi-Jun, CHEN De-Zhao. Multi-product clonal selection algorithm and its application to batch plants scheduling[J]. J4, 2010, 44(2): 338-343.