Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1786-1790    DOI: 10.3785/j.issn.1008-973X.2011.10.015
    
Experimental study of influence of iodine content on Bunsen reaction
in the sulfur-iodine cycle for hydrogen production
ZHU Qiao-qiao1, WANG Zhi-hua2, YANG Jian2, ZHANG Yan-wei2,
ZHOU Jun-hu2, CEN Ke-fa2
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of iodine content on the separation and purification of liquid-liquid phase, in H2SO4-HI-I2-H2O mixture solution of Bunsen reactor, were investigated to familiarize the separation characteristics in the operating temperature of 291 and 305 K. Calculation results showed that iodine content at the point where iodine saturated was 2.3~2.9 times as large as the one at the point that the mixture solution started to separate. The density of heavier phase (hydriodic acid phase) drastically increased by increasing iodine content, while the one of lighter phase (sulfuric acid phase) slightly decreased. Sulfuric acid concentration of lighter phase evenly enhanced as iodine content increased, while hydriodic acid concentration of heavier phase slightly reduced and impurities of both phases drastically decreased. In conclusion, increasing iodine content favored liquid-liquid phase separation and purification, and then reached system optimization and thermal efficiency enhancement of the sulfur-iodine hydrogen production process.



Published: 01 October 2011
CLC:  TK 91  
Cite this article:

ZHU Qiao-qiao, WANG Zhi-hua, YANG Jian, ZHANG Yan-wei, ZHOU Jun-hu, CEN Ke-fa. Experimental study of influence of iodine content on Bunsen reaction
in the sulfur-iodine cycle for hydrogen production. J4, 2011, 45(10): 1786-1790.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.10.015     OR     https://www.zjujournals.com/eng/Y2011/V45/I10/1786


硫碘制氢中碘量对Bunsen反应影响的实验研究

为了进一步了解Bunsen反应的两相分层特性,在291、305 K的反应温度下,通过自制的Bunsen反应容器配置H2SO4、HI、I2、H2O混合溶液,研究碘量(I2)对溶液分层以及净化的影响.计算结果表明:从溶液分层到溶液饱和所需的I2增加1.3~1.9倍,并且随着I2的增加,下层溶液(HI相)密度明显增大,上层溶液(H2SO4相)密度小幅度地减小,上层溶液的H2SO4浓度均匀增加,下层溶液的HI浓度略微减少,上、下层溶液的杂质浓度同时急剧降低.可见,I2的加入有利于混合溶液的分层以及净化,也有利于硫碘制氢系统的流程优化和效率提高.

[1] 吴川,张华民,衣宝廉.化学制氢技术研究进展[J].化学进展,2005,17(3): 522-527.
WU Chuan, ZHANG Huamin, YI Baolian. Recent advances in hydrogen generation with chemical methods [J]. Progress in Chemistry, 2005, 17(3): 522-527.
[2] 周俊虎,谢琳,程军,等.富含3类大分子有机质的废弃食物发酵产氢特性 [J].浙江大学学报:工学版,2006,40(11): 2007-2010.
ZHOU Junhu, XIE Lin, CHENG Jun, et al. Biohydrogen production from food wastes composed of carbohydrates, proteins and lipoids by fermentation [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(11): 2007-2010.
[3] FUNK J E, REINSTROM R M. Energy requirements in the production of hydrogen from water [J]. I&EC Process Design and Development, 1966, 5(3): 336-342.
[4] NORMAN J H, BESENBRUCH G E, O’KEEFE D R. Thermochemical watersplitting for hydrogen production [R]. GRI80/0105, USA, Washington DC: Gas Research Institute, 1981.
[5] KNOCHE K F, SCHEPER H, HESSELMANN K. Second law and cost analysis of the oxygen generation step of the General Atomic sulfuriodine cycle [C]∥ Proceeding of the 5th World Hydrogen Energy Conference. Toronto Canada: Pergamon Press, 1984: 487-502.
[6] BROWN L C, LENTSCH R D, BESENBRUCH G E, et al. Alternative flowsheets for the sulfuriodine thermochemical hydrogen cycle [C]∥Proceeding of AIChe 2003 spring National Meeting. New Orleans: [s. n.], 2003.
[7] NORMAN J H, BESENBRUCH G E, BROWN L C, et al. Thermochemical watersplitting cycle, Benchscale investigations and process engineering [R]. Washington DC: General Atomic Company, 1982.
[8] ZHANG Yanwei, WANG Zhihua, ZHOU Junhu, et al. Effect of preparation method on platinumceria catalysts for hydrogen iodide decomposition in sulfuriodine cycle [J]. International Journal of Hydrogen Energy, 2008, 33(2): 602-607.
[9] ZHANG Yanwei, ZHOU Junhu, CHEN Yun, et al. Hydrogen iodide decomposition over nickelceria catalysts for hydrogen production in the sulfuriodine cycle [J]. International Journal of Hydrogen Energy, 2008, 33(20): 5477-5483.
[10] ZHANG Yanwei, WANG Zhihua, ZHOU Junhu, et al. Catalytic decomposition of hydrogen iodide over pretreated Ni/CeO2 catalysts for hydrogen production in the sulfuriodine cycle [J]. International Journal of Hydrogen Energy, 2009, 34(21): 8792-8798.
[11] SAKURAI M, NAKAJIMA H, ONUKI K. Investigation of 2 liquid phase separation characteristics on the iodinesulfur thermochemical hydrogen production process [J]. International Journal of Hydrogen Energy, 2000, 25(7): 605-611.
[12] 白莹,张平,曲永水.热化学硫碘循环中Bunsen反应 [J].应用化学,2009,26(3): 292-296.
BAI Ying, ZHANG Ping, QU Yongshui. Bunsen reaction in thermochemical iodinesulfur cycle [J]. Chinese Journal of Applied Chemistry, 2009, 26(3): 292-296.
[13] YOON H J, CHEON NO H, KIM Y S, et al. Demonstration of the IS thermochemical cycle feasibility by experimentally validating the overazeotropic condition in the hydroiodic acid phase of the Bunsen process [J]. International Journal of Hydrogen Energy, 2009, 34(19): 7939-7948.
[14] KASAHARA S, KUBO S J, ONUKI K, et al. Thermal efficiency evaluation of HI synthesis/ concentration procedures in the thermochemical water splitting IS process [J]. International Journal of Hydrogen Energy, 2004, 29(6): 579-587.
[15] SAKURAI M, NAKAJIMA H, AMIR R, et al. Experimental study on sidereaction occurrence condition in the iodinesulfur thermochemical hydrogen production process [J]. International Journal of Hydrogen Energy, 2000, 25(7): 613-619.

[1] QIAN Miao, MEI De-qing, LIU Bin-hong,CHEN Zi-chen. Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. J4, 2011, 45(8): 1387-1392.
[2] YANG Jian,WANG Zhi-hua,ZHANG Yan-wei,CHEN Yun,ZHOU Jun-hu,CEN Ke-fa. Process design and simulation of open-loop sulfur-iodine
thermo-chemical cycle for hydrogen production
[J]. J4, 2011, 45(5): 869-877.
[3] LIN Lin, WU Rui, ZHANG Xin-xin. Optimization for geometric parameters of micro-channel heat sink
using inverse problem method
[J]. J4, 2011, 45(4): 734-740.