Please wait a minute...
J4  2009, Vol. 43 Issue (5): 962-967    DOI: 10.3785/j.issn.1008-973X.2009.05.034
    
Synthesis of PtRu/C and PtNi/C catalysts and their electrocatalytic performance for methanol electrooxidatio
ZHAO Jie1,2, HUANG Si-yu1, CHEN Wei-xiang1
(1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
2. School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 317000, China)
Download:   PDF(1202KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

PtRu/C and PtNi/C catalysts were prepared by microwave-assistant polyol process, and their microstructure and morphology were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results showed that the average diameters of PtRu and PtNi alloy nanoparticles in the catalysts are 2.7 nm and 3.0 nm respectively, and the alloy nanoparticles are homogeneous in size and highly dispersed on the carbon support. Compared with the Pt/C catalyst, the synthesized PtRu/C and PtNi/C catalysts exhibit lower onset oxidation potential and more stable polarization current for methanol electrooxidation. The facts indicate that the PtRu/C and PtNi/C catalysts have more durable electrocatalytic performance for methanol oxidation and better resistance to CO-poisoning than Pt/C catalyst. Because the Ru and Ni metals in the alloys can form oxygen-containing species with their surface adsorbed water under  low potential, the adsorbed intermediates such as CO on Pt metal surface can be oxidized to CO2 and the CO-poisoning of the catalysts is avoided.



Published: 18 November 2009
CLC:  TM911.4  
Cite this article:

DIAO Jie, HUANG Sai-Yu, CHEN Wei-Xiang. Synthesis of PtRu/C and PtNi/C catalysts and their electrocatalytic performance for methanol electrooxidatio. J4, 2009, 43(5): 962-967.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.05.034     OR     http://www.zjujournals.com/eng/Y2009/V43/I5/962


PtRu/C和PtNi/C催化剂合成及其对甲醇氧化的电催化性能

采用微波多元醇法合成PtRu/C和PtNi/C催化剂,利用透射电镜(TEM)和X-射线衍射仪(XRD)对催化剂的微观结构和形貌进行了表征.结果表明,在催化剂中PtRu和PtNi合金纳米粒子的平均粒径分别为2.7和3.0 nm,粒径均匀,并高度均匀地分散在碳载体上.电化学测试结果表明,与Pt/C催化剂相比,PtRu/C和PtNi/C催化剂对甲醇的电化学氧化具有更低的起始电位和更稳定的极化电流,说明PtRu/C和PtNi/C催化剂对甲醇氧化具有更稳定的电催化性能和更好的抗CO中毒性能.这是由于合金催化剂中的Ru和Ni可以在较低的电位下与其表面吸附水形成含氧物种,使Pt表面吸附的CO等中间物氧化为CO2,避免了催化剂的CO中毒.

[1] HILLS C W, NASHNER M S, FRENKEL A I, et al. Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors [J]. Langmuir, 1999, 15(3): 690700.
[2] PARK K W, CHOI J H, SUNG Y E. Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation [J]. Journal of Physical Chemistry B, 2003, 107(24): 58515856.
[3] WEI Z D, GUO H T, TANG Z Y. Methanol electro-oxidation on platinum and platinum-tin alloy catalysts dispersed on active carbon [J]. Journal of Power Sources, 1996, 58(2): 239242.
[4] BOCK C, PAQUET C, COUILLARD M, et al. Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism [J]. Journal of American Chemical Society, 2004, 126(25): 80288037.
[5] 俞贵艳,陈卫祥,赵 杰,等. PtNi/C纳米电催化剂的合成及其对甲醇氧化的电催化性能[J]. 浙江大学学报:工学版, 2007, 41(12): 20172111.
YU Gui-yan, CHEN Wei-xiang, ZHAO Jie, et al. Synthesis of PtNi/C electrocatalysts and their electrocatalytic performance for methanol electrooxidation [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(12): 20172111.
[6] KOMARNENI S, LI D S, NEWALKAR B, et al. Microwave-polyol process for Pt and Ag nanoparticles [J]. Langmuir, 2002, 18(5): 59595962.
[7] YU W Y, TU W X, LIU H F. Synthesis of nanoscale platinum colloids by microwave dielectric heating [J]. Langmuir, 1999, 15(1): 69.
[8] TU W X, LIU H F. Continuous synthesis of colloidal metal nanoclusters by microwave irradiation [J]. Chemistry of Materials, 2000, 12(2): 564567.
[9] TU W X, LIU H F. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation [J]. Journal of Materials Chemistry, 2000, 10(9): 22072212.
[10] YAN X P, LIU H F, LIEW K Y. Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction [J]. Journal of Materials Chemistry, 2001, 11(12): 33873391.
[11] LIU Z L, LEE J Y, HAN M, et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions [J]. Journal of Materials Chemistry, 2002, 12(8): 24532458.
[12] YANG J, DEIVARAJ T C, TOO H P, et al. Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol [J]. Langmuir, 2004, 20(10): 42414245.
[13] 俞贵艳,陈卫祥,赵杰,等. Pt/C纳米复合材料的合成和表征[J]. 浙江大学学报:工学版, 2006, 40(2): 330333.
YU Gui-yan, CHEN Wei-xiang, ZHAO Jie, et al. Synthesis and characterization of Pt/C nanocomposites [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(2): 330333.
[14] CHEN W X, LEE J Y, LIU Z L. Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications [J]. Chemical Communications, 2002: 2588-2589. DOI: 10.1039/b208600j.
[15] XIONG L, KANNAN A M, MANTHIRAM A. Pt-M (M=Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells [J]. Electrochemisty Communications, 2002, 4(11): 898903.
[16] VERMA L K. Studies on methanol fuel cell [J]. Journal of Power Sources, 2000, 86(1/2): 464468.

[1] XIAO Yu-Feng, HUANG Sai-Yu, CHEN Wei-Xiang. Microwave synthesis of Pd/C and Pd2Pt/C electrocatalysts for fomic acid electrooxidation[J]. J4, 2009, 43(7): 1327-1331.