[1] SIMOES L C, SIMOES M, OLIVEIRA R, et al. Potential of the adhesion of bacteria isolated from drinking water to materials [J]. Journal of Basic Microbiology, 2007, 47(2): 174-183.
[2] CHARACKLIS W G. Bioengineering report: Fouling biofilm development: A process analysis[J]. Biotechnology and Bioengineering, 1981, 23(9): 1923-1960.
[3] LECHEVALLIER M W, BABCOCK T M, LEE R G. Examination and characterization of distribution system biofilms[J]. Applied and Environmental Microbiology, 1987, 53(12): 2714-2724.
[4] PAUL E, OCHOA J C, PECHAUD Y, et al. Effect of shear stress and growth conditions on detachment and physical properties of biofilms[J]. Water Research, 2012, 46(17): 5499-5508.
[5] DOUTERELO I, SHARPE R L, BOXALL J B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system [J]. Water Research, 2013, 47(2): 503-516.
[6] ROCHEX A, GODON J, BERNET N, et al. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities[J]. Water Research, 2008, 42(20): 4915-4922.
[7] CHRISTENSEN B E, Characklis, W G. Physical and chemical properties of biofilms[M]. New York: John Wiley, 1990.
[8] 黄廷林,韩宏大,何文杰,等. 安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
[9] BRUGNONI L I, CUBITTO M A, LOZANO J E. Role of shear stress on biofilm formation of Candida krusei in a rotating disk system [J]. Journal of Food Engineering, 2011, 102(3): 266-271.
[10] PERCIVAL S L, KNAPP J S, WALES D S, et al. The effect of turbulent flow and surface roughness on biofilm formation in drinking water[J]. Journal of Industrial Microbiology & Biotechnology, 1999, 22(3): 152-159.
[11] OLLOS P J, HUCK P M, SLAWSON R M. Factors affecting biofilm accumulation in Model Distribution Systems [J]. Journal :American Water Works Association, 2003, 95(1): 87-97.
[12] LEHTOLA M J, LAXANDER M, MIETTINEN I T, et al. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes [J]. Water Research, 2006, 40(11): 2151-2160.
[13] PARK A, JEONG H, LEE J, et al. Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel [J]. BioChip Journal, 2011, 5(3): 236-241.
[14] DONLAN R M, PIPES W O. Selected drinking water characteristics and attached microbial population density [J]. Journal American Water Works Association, 1988, 80(11): 70-76.
[15] RAGAZZO P, NARDO M. Biofilm formation in surface distribution systems [C]∥ Conference Proceedings of the NSF International/WHO. Switzerland: [s. n.], 2002: 535-553.
[16] DOUTERELO I, HUSBAND S, BOXALL J B. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system [J]. Water Research, 2014: 54, 100-114.
[17] GIBBS R A S J. Assimilable organic carbon concentrations and bacterial numbers in a water distribution system [J]. Water Science and Technology, 1993, 3 4(27): 159166.
[18] 黄佳佳. 实际供水管道管壁生物膜菌落属性及其影响因素研究[D]. 杭州:浙江大学,2014: 13-14.
HUANG Jia jia. Properties and principal factors of biofilm in water supply system [D]. Hangzhou: Zhejiang University, 2014: 13-14.
[19] 国家环境保护总局.水和废水监测分析方法[M]. 北京:中国环境科学出版社,2002.
[20] EICHLER S, CHRISTEN R, HLTJE C, et al. Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA and DNA Based 16S rRNA gene fingerprinting [J]. Applied and Environmental Microbiology, 2005, 72(3): 1858-1872.
[21] EDWARDS M, PRUDEN A, FALKINHAM III J O, et al. Relationship between biodegradable organic matter and pathogen concentrations in premise plumbing[EB/OL]. (2013 06 23) [2015 05 18]. http: www.waterrf.org/Pages/Projects.aspx?PID=4251.
[22] SHEN L, LIU S, ZHU Q, et al. Distribution and diversity of nitrite dependent anaerobic methane oxidising bacteria in the sediments of the Qiantang River [J]. Microbial Ecology, 2014, 67(2): 341-349.
[23] 王薇,任红星,胡震超,等. 管材对供水管网生物膜微生物种群多样性的影响研究[J]. 环境科学学报,2014,35(3):699-704.
WANG Wei, REN Hong xing, HU Zhen chao, et al. Impact of pipe materials on bacterial population diversity in drinking water biofilm [J]. Acta Scientiae Circumstantiae, 2014, 35(3): 699704.
[24] WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study.[J]. Journal of Bacteriology, 1991, 173(2): 697703.
[25] MUYZER G, De WAAL E C, UITTERLINDEN A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA.[J]. Applied and Environmental Microbiology, 1993, 59(3): 695700.
[26] ANDERSON I C, PARKIN P I. Detection of active soil fungi by RT PCR amplification of precursor rRNA molecules [J]. Journal of Microbiological Methods, 2007, 68(2): 248-253.
[27] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high throughput community sequencing data [J]. Nature methods, 2010, 7(5): 335-336.
[28] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open source, platform independent, community supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
[29] STOODLEY P, YANG S, LAPPIN SCOTT H, et al. Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocal microscopy [J]. Biotechnology and Bioengineering, 1997, 56(6): 681-688.
[30] MANUEL C M, NUNES O C, MELO L F. Dynamics of drinking water biofilm in flow/non flow conditions [J]. Water Research, 2007, 41(3): 551-562.
[31] RITTMAN B E. The effect of shear stress on biofilm loss rate [J]. Biotechnology and Bioengineering, 1982, 24(2): 501-506. |