Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Aeronautics and Astronautics Technology     
Delamination threshold load of low velocity impact of composite wing box
CHEN Yan, GAO Shang jun, YU Zhe feng, WANG Hai
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
Download:   PDF(864KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An empirical model of delamination threshold load for boundary of flange skin T joint was proposed based on the strain release energy rate of mode Ⅱ crack and interlaminar shear strength (ILSS). Low velocity impact tests were conducted on a composite wing box with areas of different thickness. Two types of impact sites were concerned: one at the middle of two wing beams (type A) and the other at the boundary of flange skin T joint (type B). With the delamination threshold load (DTL) of a specified area, the strain release energy rate of mode Ⅱ crack and interlaminar shear strength were obtained and employed as the baseline to compute the DTL under other cases. The DTL prediction of type A based on strain release energy rate of mode Ⅱ crack only performs well for the impacts caused by tups with the same diameter as that of the reference. The interlaminar shear strength based method is more accurate for the DTL prediction of impacts under different tups except the cases that the thickness of baseline greatly differs from that of the target, while the method with contact radius correction improves the accuracy of prediction. The DTL of type B computed based on that of type A matched well with the experimental data. The liner DTL models were constructed through linear fitting. The prediction accuracy was generally improved based on multiple sets of data, but lower than that obtained by the method with contact radius correction.



Published: 31 March 2016
CLC:  O 347  
  V 258  
Cite this article:

CHEN Yan, GAO Shang jun, YU Zhe feng, WANG Hai. Delamination threshold load of low velocity impact of composite wing box. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 186-192.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.01.027     OR     http://www.zjujournals.com/eng/Y2016/V50/I1/186


复合材料翼盒低速冲击分层阈值力模型

基于II型裂纹能量释放率和层间剪切强度(ILSS)的分层阈值力模型,提出翼梁与蒙皮T型连接边缘区域的冲击分层阈值力经验计算公式.在具有不同蒙皮厚度的复合材料翼盒表面开展低速冲击实验.冲击点分为两类:一类位于两翼梁之间的中点(A型),另一类位于梁缘条和蒙皮T型连接区域的边缘(B型).根据某区域A型冲击点分层阈值力(DTL),获得材料的II型裂纹能量释放率和层间剪切强度,计算其他区域的分层阈值力.结果表明,对于A型冲击点,基于II型裂纹能量释放率的分层阈值力模型仅在冲头尺寸相同的情况下计算精度较高;基于层间剪切强度的模型考虑到冲头尺寸的影响,对不同冲头作用下冲击分层阈值有较好的计算结果;使用基于层间剪切强度的模型时,当预测区域的厚度与参考区域厚度相差较大时,精度较差,采用修正接触半径的方法后结果较好.使用提出的模型,用A型区域的分层阈值力可以很好地预测B型区域的分层阈值力.构造相应的线性函数,基于多组实验数据进行线性拟合的结果普遍较好,但精度低于采用修正接触半径的方法.

[1] SCHOEPPNER G A, ABRATE S. Delamination threshold loads for low velocity impact on composite laminates [J]. Compos Part A: Applied Science and Manufacturing, 2000, 31(9): 903-915.
[2] 郑晓霞,郑锡涛,沈真,等.低速冲击与准静态压痕力下复合材料层合板的损伤等效性[J]. 航空学报, 2010, 31(5): 928-933.
ZHENG Xiao xia, ZHENG Xi tao, SHEN Zhen, et al. Damage equivalent of composite laminates subjected to drop weight impact and quasi static indentation force [J].Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 928-933.
[3] 叶强, 王仁鹏, 陈普会, 等. 准静态压痕力作用下复合材料层合板的凹坑深度预测方法[J]. 复合材料学报, 2012, 29(1): 144-149.
YE Qiang, WANG Ren peng, CHEN Pu hui, et al. Prediction of the dent depth of composite laminates subjected to quasi static indentation [J]. Acta Materiae Compositae Sinica, 2012, 29(1): 144-149.
[4] BENZEGGAGH M L, KENANE M. Measurement of mixed mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439-449.
[5] KENANE M, BENZEGGAGH M L. Mixed mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading [J]. Composites Science and Technology, 1997, 57(5): 597-605.
[6] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials [J]. Journal of Composite Materials, 1973, 7(4): 448-464.
[7] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[8] SHI Y, PINNA C, SOUTIS C. Modelling impact damage in composite laminates: a simulation of intra and inter laminar cracking [J]. Composite Structures, 2014, 114(8): 10-19.
[9] 王凯伦, 关志东, 穆军武. 复合材料层板冲击后分层扩展及剩余压缩强度研究[C]∥第15届中国科协年会第 17 分会场: 复合材料与节能减排研讨会论文集. 贵阳:[s.n.],2013.
WANG Kai lun, GUAN Zhi dong, MU Jun wu. Delamination growth and residual compressive strength of composite laminates after impact [C]∥Composite Materials and Energy Saving Essays. Guiyang:[s.n.],2013.
[10] HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates [J]. Composites Science and Technology, 2000, 60(2): 273-281.
[11] 关志东, 郭渊. 含缺陷的复合材料层合板低速冲击过程的有限元模拟[J]. 复合材料学报, 2006, 23(2): 180-184.
GUAN Zhi dong, GUO Yuan. Computer simulation of low velocity impact process of the composite laminate with defect [J]. Acta Materiae Compositae Sinica, 2006, 23(2): 180184.
[12] 陈普会, 李念. 复合材料层合板低速冲击损伤的预测模型[J]. 南京航空航天大学学报, 2014, 46(3): 341-348.
CHEN Pu hui, LI Nian. Damage prediction model for composite laminates subjected to low velocity impact [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(3): 341-348.
[13] 寇剑锋, 徐绯, 郭家平, 等. 黏聚力模型破坏准则及其参数选取[J]. 机械强度, 2011, 33(5): 714-718.
KOU Jian feng, XU Fei, GUO Jia ping, et al. Damage laws of cohesive zone model and selection of the paremeters [J]. Journal of Mechanical Strength, 2011, 33(5): 714-718.
[14] SJOBLOM P. Simple design approach against low velocity impact damage [C]∥ Proceedings of 32nd SAMPE Symposium.Anaheim:[s.n.],1987: 529-539.
[15] SUTHERLAND L S, SOARES C G. Contact indentation of marine composites [J]. Composite Structures, 2005, 70(3): 287-294.
[16] YANG F J, CANTWELL W J. Impact damage initiation in composite materials [J]. Composites Science and Technology, 2010, 70(2): 336-342.
[17] CAIRNS D S, LAGACE P A. Thick composite plates subjected to lateral loading [J]. Journal of Applied Mechanics, 1987, 54(3): 611-616.
[18] LIAO W C. Smooth indentation of a multilayer laminate by a cylindrical indentor [J]. Composites Science and Technology, 2001, 61(12): 1801-1809.
[19] WU E, YEN C S. The contact behavior between laminated composite plates and rigid spheres [J]. Journal of Applied Mechanics, 1994, 61(1): 60-66.
[20] CHEN P, XIONG J, SHEN Z. Thickness effect on the contact behavior of a composite laminate indented by a rigid sphere [J]. Mechanics of Materials, 2008, 40(4): 183194.
[21] NAMIKO Y, NATHAN W, BRIAN L W. Wrapping and through thickness poisson effects on composite plate and shell contact laws [C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: [s. n.], 2005: 18-21.
[22] 高尚君,于哲峰,汪海. 基于改进层间剪切强度准则的层压板冲击分层阈值力预测[J]. 航空学报, 2014, 35(5): 1329-1335.
GAO Shang jun, YU Zhe feng, WANG Hai. Prediction of delamination threshold load for impact on composite laminate based on modified interlaminar shear strength criterion [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1329-1335.
[23] PARK H, KIM H. Damage resistance of single lap adhesive composite joints by transverse ice impact [J]. International Journal of Impact Engineering, 2010, 37(2): 177-184.
[24] 刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟[J]. 爆炸与冲击, 2014, 34(4): 451-456.
LIU Jian gang, LI Yu long, SUO Tao, et al. Numerical simulation of high velocity impact of composite T joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451-456.
[25] DAVIES G A O, ZHANG X. Impact damage prediction in carbon composite structures [J]. International Journal of Impact Engineering, 1995, 16(1): 149-170.

[1] HU Jian-hong, TANG Zhi-feng, LV Fu-zai, PAN Xiao-hong, HAN Ye, JIANG Xiao-Yong. Improved semi-analytical finite element modeling of axisymmetric guided wave modes in composite pipes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 116-122.
[2] WANG Hui-ming, ZHAO Zhi-cheng. Effect of interfacial defect on Love waves in composite structures
with piezoelectric thin film
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(3): 555-559.
[3] LI Ying , YIN Zhong-ke, CAO Xiao, DENG Shui-guang. Preprocessing scheme for improving Schnorr signature in JavaCard[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(3): 386-391.
[4] CHEN Xiao-an, SHAO Bing-mei, SONG Shun-cheng, WANG Ting-hui. Measurements of shearing property of high N alloy steel
 at super high strain rates
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(11): 1948-1952.
[5] CHEN Wei-Liang, XU Bo-Hou, HUANG Lei. Vibration analysis of stator winding end baskets of  large turbo-generator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1558-1561.