Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Electrical Engineering     
Optimization of grid connected wind power capacity based on principle of maximum entropy
BIAN Qiao yan1,2, SUN Li ying2, LAN Zhou2, XU Chong2, WANG Bin bin3, XIN Huan hai1  
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2. State Grid Zhejiang Electric Power Company, Hangzhou 310009, China;3.Electronics Engineering and Photoelectronic Technology, Nanjing University of Sci.& Tech Zijin College, Nanjing 210023, China
Download:   PDF(912KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new wind power capacity optimization method was proposed based on the principle of maximum entropy in order to maximize the grid connected wind power capacity while satisfying the reliability requirements of the power system. The maximum entropy principle was applied to solve the most possibly realized probability distribution of the stochastic power flow, using the partial information of the power flow variables. The wind power capacity optimization problem was formulated as a chance constrained programming model, which considers the system security requirements and objects to maximize the wind power capacity. The pattern search algorithm was adopted to solve the chance constrained programming model. Numerical case studies were conducted in an actual power system to compare the proposed method with the Gram Charlier method. Results verified the effectiveness of the proposed method.



Published: 31 March 2016
CLC:  TM 715  
Cite this article:

BIAN Qiao yan1,2, SUN Li ying2, LAN Zhou2, XU Chong2, WANG Bin bin3, XIN Huan hai1. Optimization of grid connected wind power capacity based on principle of maximum entropy. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 166-172.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.01.024     OR     http://www.zjujournals.com/eng/Y2016/V50/I1/166


基于最大熵原理的风电并网容量优化

为了在保证系统安全运行的前提下,最大化风电并网容量以充分利用风能,提出基于最大熵原理的风电并网容量优化方法.该方法根据最大熵原理,基于电力系统中随机潮流的部分信息,求解随机潮流最符合实际的概率分布,刻画出一个较准确的不确定性环境;采用机会约束描述电力系统的安全运行要求,以最大化风电并网容量为目标,建立风电并网容量优化模型.利用模式搜索法来求解风电并网容量优化模型,采用基于实际电网的算例,以Monte Carlo法为基准,将提出的方法与基于Gram Charlier级数展开的方法进行比较,算例结果验证了提出方法的可行性和有效性.

[1] ADAMS J. Impact of high penetration of wind on power system operations [C]∥ Power and Energy Society General Meeting. Calgary: IEEE, 2009: 12.
[2] BILLINTON R, CHEN Hua. Assessment of risk based capacity benefit factors associated with wind energy conversion systems [J]. IEEE Transactions on Power Systems, 1998, 13 (3): 1191-1196.
[3] 王海超,鲁宗相,周双喜. 风电场发电容量可信度研究 [J]. 中国电机工程学报, 2005, 25 (10): 103-106.
WANG Hai chao, LU Zong xiang, ZHOU Shuang xi. Research on the capacity credit of wind energy resources [J]. Proceedings of the CSEE, 2005, 25 (10): 103-106.
[4] 雷亚洲,王伟胜,印永华,等. 基于机会约束规划的风电穿透功率极限计算 [J]. 中国电机工程学报, 2002, 22(5): 33-36.
LEI Ya zhou, WANG Wei sheng, YIN Yong hua, et al. Wind power penetration limit calculation based on chance constrained programming [J]. Proceedings of the CSEE, 2002, 22(5): 33-36.
[5] ZHANG Yang, ZHANG Hong bo, YAO De gui, et al. Research on the wind power penetration limit in power system [J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11 (8): 4433-4438.
[6] ZHANG Hui, LI Pu. Chance constrained programming for optimal power flow under uncertainty [J]. IEEE Transactions on Power Systems, 2011, 26 (4): 2417-2424.
[7] CONTI S, RAITI S. Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators [J]. Solar Energy, 2007, 81(12): 1473-1481.
[8] BRICENO VICENTE W C, CAIRE R, et al. Probabilistic load flow for voltage assessment in radial systems with wind power [J]. International Journal of Electrical Power and Energy Systems, 2012, 41 (1): 27-33.
[9] LI Gan, ZHANG Xiao ping. Comparison between two probabilistic load flow methods for reliability assessment [C]∥ Power and Energy Society General Meeting. Calgary: IEEE, 2009: 1-7.
[10] YUAN Y, ZHOU J, JU P, et al. Probabilistic load flow computation of a power system containing wind farms using the method of combined cumulants and Gram Charlier expansion [J]. IET Renewable Power Generation, 2011, 5 (6): 448-454.
[11] FAN Miao, VITTAL V, HEYDT G T, et al. Probabilistic power flow analysis with generation dispatch including photovoltaic resources [J]. IEEE Transactions on Power Systems, 2013, 28 (2): 1797-1805.
[12] USAOLA Julio. Probabilistic load flow with wind production uncertainty using cumulants and Cornish–Fisher expansion [J]. International Journal of Electrical Power and Energy Systems, 2009, 31 (9): 474-481.
[13] YAO Shu jun, WANG Yan. Cornish fisher expansion for probabilistic power flow of the distribution system with wind energy system [C]∥ 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). Weihai: IEEE, 2011: 1378-1383.
[14] RUIZ RODRIGUEZ F J, HERNNDEZ J C, JURADO F. Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion [J]. Electric Power Systems Research, 2012, 89: 129-138.
[15] JAYNES E T. Information theory and statistical mechanics [J]. The Physical Review, 1957, 106 (4): 620-630.
[16] BIAN Qiao yan, XU Qian, SUN Li ying, et al. Grid connected wind power capacity optimization based on the principle of maximum entropy [C]∥ Power and Energy Society General Meeting. National Harbor, MD: IEEE, 2014: 1-5.
[17] DJAFARI A M. A Matlab program to calculate the maximum entropy distributions [C]∥ Proceeding of 11th International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis. Plateau de Moulon, France: Laboratoire des Signaux et Systèmes (CNRS ESE UPS), 2001.
[18] 郑静,文福拴,李力,等. 计及风险控制策略的含风电机组的输电系统规划 [J]. 电力系统自动化, 2012, 35 (22): 71-76.
ZHENG Jing, WEN Fu shuan, LI Li, et al. Transmission system planning with risk control strategies for power systems with wind generators [J]. Automation of Electric Power Systems, 2012, 35 (22): 71-76.
[19] 吴兴远. 模式搜索法在最优化问题中的应用 [J]. 软件导刊, 2009, 8(8): 122-123.
WU Xing yuan. Application of pattern search in optimation problem [J]. Software Guide, 2009, 8(8): 1221-23.

[1] HU Xu-Feng, HUANG Min-Xiang, WANG Ting-Ting. Optimization of transmission line maintenance scheduling based on expected value two-level programming[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(11): 2067-2072.