[1] HUGHES T J R. The finite element method [M]. New York: Dover Publications, 2000.
[2] BATHE K J. Finite element procedures [M]. NewJersey: Prentice Hall, 1996.
[3] 李忠学.梁板壳有限单元中的各种闭锁现象及解决方法[J]. 浙江大学学报:工学版,2007, 41(7): 1119-1125.
LI Zhong xue. Strategies for overcoming locking phenomena in beam and shell finite element formulations [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(7): 1119-1125.
[4] HUGHES T J R. Reduced and selective integration techniques in the finite element analysis of plates [J]. Nuclear Engineering and Design, 1978, 46(1): 203-222.
[5] FLANAGAN D P, BELYTSCHKO T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control [J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
[6] BELYTSCHKO T, BACHRACH W E. Efficient implementation of quadrilaterals with high coarse mesh accuracy [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 54(2): 279-301.
[7] FREDRIKSSON M, OTTOSEN N S. Fast and accurate 4 node quadrilateral [J]. International Journal for Numerical Methods in Engineering, 2004, 61(11): 1809-1834.
[8] BREZZI F, FORTIN M. Mixed and hybrid finite element methods [M]. New York: Springer, 1991.
[9] BONET J, BURTON A J. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications [J]. Communications in Numerical Methods in Engineering, 1998, 14(5): 437-449.
[10] DOHRMANN C R, HEINSTEIN M W, JUNG J, et al. Node based uniform strain elements for three node triangular and four node tetrahedral meshes [J]. International Journal for Numerical Methods in Engineering, 2000, 47(9): 1549-1568.
[11] KRYSL P, ZHU B. Locking free continuum displacement finite elements with nodal integration [J]. International Journal for Numerical Methods in Engineering, 2008, 76(7): 1020-1043.
[12] LAMICHHANE B P. Inf sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity [J]. IMA Journal of NumericalAnalysis, 2009, 29(2): 404-420.
[13] LIU G R, DAI K Y, NGUYEN THOI T. A smoothed finite element for mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 39(6): 859-877.
[14] LIU G R, NGUYEN XUAN H, NGUYEN THOI T. A theoretical study of S FEM models: properties, accuracy and convergence rates [J]. International Journal for Numerical Methods in Engineering, 2010, 84(10): 1222-1256.
[15] LIU G R. A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods. Part I: theory and Part II: application to solid mechanics problems [J]. International Journal for Numerical Methods in Engineering, 2010, 81(9): 1093-1156.
[16] NGUYEN XUAN H, BORDAS S, NGUYEN DANG H. Smooth finite element methods: convergence, accuracy and properties [J]. International Journal for Numerical Methods in Engineering, 2008, 74(2): 175-208.
[17] BORDAS S, RABCZUK T, NGUYEN XUAN H, et al. Strain smoothing in FEM and XFEM [J]. Computers and Structures, 2010, 80(23): 1419-1443.
[18] HUERTA A, FERNANDEZ MENDEZ S. Locking in the incompressible limit for the element free Galerkin method [J]. International Journal for Numerical Methods in Engineering, 2001, 51(11): 1361-1383.
[19] CHEN J S, WU C T, YOON S, et al. A stabilized conforming nodal integration for Galerkin mesh free methods [J]. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466.
[20] YOO J W, MORAN B, CHEN J S. Stabilized conforming nodal integration in the natural element method [J]. International Journal for Numerical Methods inEngineering, 2004, 60(5): 861-890.
[21] LIU G R, NGUYEN THOI T, LAM K Y. An edge based smoothed finite element method (ES FEM) for static, free and forced vibration analyses of solids [J]. Journal of Sound and Vibration, 2009, 320(4): 1100-1130.
[22] LIU G R, NGUYEN THOI T, NGUYEN XUAN H, et al. A node based smoothed finite element method for upper bound solution to solid problems (NS FEM) [J]. Computers and Structures, 2008, 87(1): 14-26.
[23]. NGUYEN THOI T, LIU G R, LAM K Y, et al. A face based smoothed finite element method (FS FEM) for 3D linear and nonlinear solid mechanics problems using 4 node tetrahedral elements [J]. International Journal for Numerical Methods in Engineering, 2009, 78(3): 324-353.
[24] NGUYEN THOI T, LIU G R, DAI K Y. Selective smoothed finite element method [J]. Tsinghua Science and Technology, 2007, 12(5): 497-508.
[25] NGUYEN XUAN H, BORDAS S, NGUYEN DANG H. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements [J]. Communications in Numerical Methods in Engineering, 2009, 25(1): 19-34.
[26] 王建明,张刚,戚放,等. 基于光滑有限元法的体积锁定研究[J]. 山东大学学报:工学版,2012, 42(3): 94-99.
WANG Jian ming, ZHANG Gang, QI Fang, et al. Study of volumetric locking based on the smoothedfinite element method [J]. Journal of Shandong University: Engineering Science, 2012, 42(3): 94-99.
[27] 王建明,樊现行,裴信超,等. 光滑节点域有限元法[J]. 山东大学学报:工学版,2013, 43(2): 54-61.
WANG Jian ming, FAN Xian xing, PEI Xin chao, et al. Node based smoothed cells based on finite element method [J]. Journal of Shandong University: Engineering Science, 2013, 43(2): 54-61.
[28] LIU G R, NGUYEN THOI T, LAM K Y. A novel FEM by scaling the gradient of strains with scaling factor α (αFEM) [J]. Computational Mechanics, 2009,43(3): 369-391.
[29] LIU G R, NGUYEN THOI T. A novel alpha finiteelement method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 197(45): 3883-3897.
[30] NGUYEN XUAN H, LIU G R. An edge based smoothed finite element softened with a bubble function (bES FEM) for solid mechanics problems [J]. Computers and Structures, 2013, 128(1): 14-30.
[31] HUECK U, SCHREYER H, WRIGGERS P. On the incompressible constraint of the 4 node quadrilateralelement [J]. International Journal for Numerical Methods in Engineering, 1995, 38(18): 3039-3053.
[32] HACKER W L, SCHREYER H L. Eigenvalue analysis of compatible and incompatible rectangular four node quadrilateral elements [J]. International Journal for Numerical Methods in Engineering, 1989, 28(3): 687-704.
[33] KIDGER D J, SMITH I M. Eigenvalues and eigenmodes of 8 node brick elements [J]. Communications in Applied Numerical Methods, 1992, 8(3): 193-205.
[34] ARNOLD D, BREZZI F, FORTIN M. A stable finite element for the stokes equations [J]. Calcolo, 1984, 21(4): 337-344.
[35] WU C T, HU W. Meshfree enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45): 2991-3010.
[36] WU C T, HU W, CHEN J S. A meshfree enrichedfinite element method for compressible and near incompressible elasticity [J]. International Journal for Numerical Methods in Engineering, 2012, 90(7): 805-938.
[37] WU C T, HU W. A two level mesh repartitioning scheme for the displacement based lower order finite element methods in volumetric locking free analyses [J]. Computational Mechanics, 2012, 50(1): 1-18.
[38] ZHANG Y P, WANG S Z, CHAN D. A new five node locking free quadrilateral element based on smoothed FEM for near incompressible linear elasticity [J]. International Journal for Numerical Methods in Engineering, 2014, 100(9): 633668.
[39] TIMOSHENKO S P, GOODIER J N. Theory of elasticity [M]. 3rd ed. NewYork: McGraw Hill, 1970.
[40] 罗伯特 D.库克. 有限元分析的概念与应用[M]. 关正西,译. 4版. 西安:西安交通大学出版社,2007.
[41] 徐芝纶.弹性力学简明教程[M]. 北京:高等教育出版社,2008. |