Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Nearly incompressible linear elasticity using five node tetrahedral element based on smoothed finite element method
WANG Si zhao1,2, ZHANG Yi ping1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou 310002, China
Download:   PDF(2007KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new five node tetrahedral element (T5) was proposed. The area weighted strain smoothing technique and the smoothed finite element method were introduced into T5 element. A volumetric locking free scheme for three dimensional tetrahedral meshes was proposed, which is the node based selective domain based strain smoothing scheme (T5-pNVW/NVW). The benchmark numerical examples show that the proposed method can solve the volumetric locking and the pressure oscillation compared to the node based smoothed FEM using the four node tetrahedral element (T4-NS).



Published: 29 October 2015
CLC:  TB 115  
  O 343  
Cite this article:

WANG Si zhao, ZHANG Yi ping. Nearly incompressible linear elasticity using five node tetrahedral element based on smoothed finite element method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1967-1973.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.10.020     OR     http://www.zjujournals.com/eng/Y2015/V49/I10/1967


基于T5单元的体积不可压缩问题光滑有限元法

提出5节点的四面体单元(T5),将无网格法的面积权重应变光滑法和光滑有限元法应用于该5节点四面体单元,提出用于解决三维体积不可压缩线弹性体的算法:基于节点光滑域的选择性体积权重应变光滑模型(T5-pNVW/NVW).数值算例显示,四节点四面体单元采用基于节点的光滑有限元法(T4-NS)无法完美解决体积锁定,相比于T4-NS法,利用提出的T5-pNVW/NVW模型能够较精确地解决体积锁定问题,并完美解决应力的棋盘式波动.

[1] HUGHES T J R. The finite element method [M]. New York: Dover Publications, 2000.
[2] BATHE K J. Finite element procedures [M]. NewJersey: Prentice Hall, 1996.
[3] 李忠学.梁板壳有限单元中的各种闭锁现象及解决方法[J]. 浙江大学学报:工学版,2007, 41(7): 1119-1125.
LI Zhong xue. Strategies for overcoming locking phenomena in beam and shell finite element formulations [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(7): 1119-1125.
[4] HUGHES T J R. Reduced and selective integration techniques in the finite element analysis of plates [J]. Nuclear Engineering and Design, 1978, 46(1): 203-222.
[5] FLANAGAN D P, BELYTSCHKO T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control [J]. International Journal for Numerical Methods in Engineering, 1981, 17(5): 679-706.
[6] BELYTSCHKO T, BACHRACH W E. Efficient implementation of quadrilaterals with high coarse mesh accuracy [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 54(2): 279-301.
[7] FREDRIKSSON M, OTTOSEN N S. Fast and accurate 4 node quadrilateral [J]. International Journal for Numerical Methods in Engineering, 2004, 61(11): 1809-1834.
[8] BREZZI F, FORTIN M. Mixed and hybrid finite element methods [M]. New York: Springer, 1991.
[9] BONET J, BURTON A J. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications [J]. Communications in Numerical Methods in Engineering, 1998, 14(5): 437-449.
[10] DOHRMANN C R, HEINSTEIN M W, JUNG J, et al. Node based uniform strain elements for three node triangular and four node tetrahedral meshes [J]. International Journal for Numerical Methods in Engineering, 2000, 47(9): 1549-1568.
[11] KRYSL P, ZHU B. Locking free continuum displacement finite elements with nodal integration [J]. International Journal for Numerical Methods in Engineering, 2008, 76(7): 1020-1043.
[12] LAMICHHANE B P. Inf sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity [J]. IMA Journal of NumericalAnalysis, 2009, 29(2): 404-420.
[13] LIU G R, DAI K Y, NGUYEN THOI T. A smoothed finite element for mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 39(6): 859-877.
[14] LIU G R, NGUYEN XUAN H, NGUYEN THOI T. A theoretical study of S FEM models: properties, accuracy and convergence rates [J]. International Journal for Numerical Methods in Engineering, 2010, 84(10): 1222-1256.
[15] LIU G R. A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods. Part I: theory and Part II: application to solid mechanics problems [J]. International Journal for Numerical Methods in Engineering, 2010, 81(9): 1093-1156.
[16] NGUYEN XUAN H, BORDAS S, NGUYEN DANG H. Smooth finite element methods: convergence, accuracy and properties [J]. International Journal for Numerical Methods in Engineering, 2008, 74(2): 175-208.
[17] BORDAS S, RABCZUK T, NGUYEN XUAN H, et al. Strain smoothing in FEM and XFEM [J]. Computers and Structures, 2010, 80(23): 1419-1443.
[18] HUERTA A, FERNANDEZ MENDEZ S. Locking in the incompressible limit for the element free Galerkin method [J]. International Journal for Numerical Methods in Engineering,  2001, 51(11): 1361-1383.
[19] CHEN J S, WU C T, YOON S, et al. A stabilized conforming nodal integration for Galerkin mesh free methods [J]. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466.
[20] YOO J W, MORAN B, CHEN J S. Stabilized conforming nodal integration in the natural element method [J]. International Journal for Numerical Methods inEngineering, 2004, 60(5): 861-890.
[21] LIU G R, NGUYEN THOI T, LAM K Y. An edge based smoothed finite element method (ES FEM) for static, free and forced vibration analyses of solids [J]. Journal of Sound and Vibration, 2009, 320(4): 1100-1130.
[22] LIU G R, NGUYEN THOI T, NGUYEN XUAN H, et al. A node based smoothed finite element method for upper bound solution to solid problems (NS FEM) [J]. Computers and Structures, 2008, 87(1): 14-26.
[23]. NGUYEN THOI T, LIU G R, LAM K Y, et al. A face based smoothed finite element method (FS FEM) for 3D linear and nonlinear solid mechanics problems using 4 node tetrahedral elements [J]. International Journal for Numerical Methods in Engineering, 2009, 78(3): 324-353.
[24] NGUYEN THOI T, LIU G R, DAI K Y. Selective smoothed finite element method [J]. Tsinghua Science and Technology, 2007, 12(5): 497-508.
[25] NGUYEN XUAN H, BORDAS S, NGUYEN DANG H. Addressing volumetric locking and instabilities by selective integration in smoothed finite elements [J]. Communications in Numerical Methods in Engineering, 2009, 25(1): 19-34.
[26] 王建明,张刚,戚放,等. 基于光滑有限元法的体积锁定研究[J]. 山东大学学报:工学版,2012, 42(3): 94-99.
WANG Jian ming, ZHANG Gang, QI Fang, et al. Study of volumetric locking based on the smoothedfinite element method [J]. Journal of Shandong University: Engineering Science, 2012, 42(3): 94-99.
[27] 王建明,樊现行,裴信超,等. 光滑节点域有限元法[J]. 山东大学学报:工学版,2013, 43(2): 54-61.
WANG Jian ming, FAN Xian xing, PEI Xin chao, et al. Node based smoothed cells based on finite element method [J]. Journal of Shandong University: Engineering Science, 2013, 43(2): 54-61.
[28] LIU G R, NGUYEN THOI T, LAM K Y. A novel FEM by scaling the gradient of strains with scaling factor α (αFEM) [J]. Computational Mechanics, 2009,43(3): 369-391.
[29] LIU G R, NGUYEN THOI T. A novel alpha finiteelement method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 197(45): 3883-3897.
[30] NGUYEN XUAN H, LIU G R. An edge based smoothed finite element softened with a bubble function (bES FEM) for solid mechanics problems [J]. Computers and Structures, 2013, 128(1): 14-30.
[31] HUECK U, SCHREYER H, WRIGGERS P. On the incompressible constraint of the 4 node quadrilateralelement [J]. International Journal for Numerical Methods in Engineering, 1995, 38(18): 3039-3053.
[32] HACKER W L, SCHREYER H L. Eigenvalue analysis of compatible and incompatible rectangular four node quadrilateral elements [J]. International Journal for Numerical Methods in Engineering, 1989, 28(3): 687-704.
[33] KIDGER D J, SMITH I M. Eigenvalues and eigenmodes of 8 node brick elements [J]. Communications in Applied Numerical Methods, 1992, 8(3): 193-205.
[34] ARNOLD D, BREZZI F, FORTIN M. A stable finite element for the stokes equations [J]. Calcolo, 1984, 21(4): 337-344.
[35] WU C T, HU W. Meshfree enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids [J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45): 2991-3010.
[36] WU C T, HU W, CHEN J S. A meshfree enrichedfinite element method for compressible and near incompressible elasticity [J]. International Journal for Numerical Methods in Engineering, 2012, 90(7): 805-938.
[37] WU C T, HU W. A two level mesh repartitioning scheme for the displacement based lower order finite element methods in volumetric locking free analyses [J]. Computational Mechanics, 2012, 50(1): 1-18.
[38] ZHANG Y P, WANG S Z, CHAN D. A new five node locking free quadrilateral element based on smoothed FEM for near incompressible linear elasticity [J]. International Journal for Numerical Methods in Engineering, 2014, 100(9): 633668.
[39] TIMOSHENKO S P, GOODIER J N. Theory of elasticity [M]. 3rd ed. NewYork: McGraw Hill, 1970.
[40] 罗伯特 D.库克. 有限元分析的概念与应用[M]. 关正西,译. 4版. 西安:西安交通大学出版社,2007.
[41] 徐芝纶.弹性力学简明教程[M]. 北京:高等教育出版社,2008.

No related articles found!