Please wait a minute...
J4  2010, Vol. 44 Issue (11): 2093-2099    DOI: 10.3785/j.issn.1008973X.2010.11.009
    
Research on control characteristic and compensation of
water hydraulic proportional pressure relief valve
ZHANG Zeng-meng1, 2, ZHOU Hua1, CHEN Ying-long1, GAO Yuan-an3
1.State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
2.Institute of Fluid Power Transmission and Control, Dalian Maritime University, Dalian 116026, China;
3.Jiujiang Branch of 707 Research Institute of CSIC, Jiujiang 332007, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

For the purpose of improving control performance of water hydraulic proportional valve, the PDBV type water hydraulic proportional pressure relief valve of TIEFENBACH was investigated through structure analysis and experiment. The experimental results of static control performance show that the hysteresis and dead band are large under open-loop control due to friction, steady flow force and hysteresis of electromagnetic actuator, etc. As a result, the closed-loop control is unstable. Aiming at decrease of hysteresis and dead band, the sectional linear inverse model of valve hysteresis was built based on least-square linear regression. With the experimental results, the hysteresis and dead band are greatly decreased through feed-forward static compensation. However, large overshoot and great pressure impact are induced. For the reason that linear controllable range among the input signal increase is much less than the decrease, the pulse feedback of the inlet pressure is applied on the increase side. It is shown that the overshoot and pressure impact are eliminated by a large margin. This contributes to improve the valve control performance and further extend the application of water hydraulic pressure proportional control.



Published: 23 December 2010
CLC:  TH 137.52  
Cite this article:

ZHANG Zeng-meng, ZHOU Hua, CHEN Ying-long, GAO Yuan-an. Research on control characteristic and compensation of
water hydraulic proportional pressure relief valve. J4, 2010, 44(11): 2093-2099.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2010.11.009     OR     http://www.zjujournals.com/eng/Y2010/V44/I11/2093


纯水比例溢流阀控制特性与补偿方法的研究

为了改善纯水比例阀的静动态控制性能,以TIEFENBACH的PDBV型三级座式纯水比例溢流阀为对象,研究阀的控制特性与补偿方法.阀的结构分析和静态比例调节特性试验表明,阀的开环静态特性滞环和死区大,线性可控性差;直接闭环控制的稳定性差,极易产生入口压力振荡.根据阀的开环静态特性试验结果,基于线性拟合建立了分段线性化的迟滞逆模型,并用于阀的前馈控制回路.阀控制特性的补偿效果试验结果表明:阀的前馈静态迟滞补偿大大减小了滞环和死区,提高了线性度,但是在正阶跃响应下易产生大幅超调和压力冲击.在直接前馈补偿中加入单边脉冲反馈的控制方式,可以基本消除超调现象.迟滞补偿对阀的非线性的有效改善,提高阀的控制性能,进一步扩大了水液压比例压力控制技术的应用.

[1] BACKE W. Water- or oil-hydraulics in the future [C]∥ Proceedings of the Sixth Scandinavian International Conference on Fluid Power. Tampere, Finland:TUT, 1999: 51-65.
[2] SIUKO M, PITKAHO M, RANEDA A, et al. Water hydraulic actuators for ITER maintenance devices [J]. Fusion Engineering and Design, 2003, 69 (1-4):141-145.
[3] CONRAD F. Trends in design of water hydraulics -motion control and openended solutions [C]∥ Proceedings of the 6th JFPS International Symposium on Fluid Power. TSUKUBA, Japan: JFPS, 2005: 420-431.
[4] LAITINEN L, HEISKANEN K, KAJASTE J, et al. Friction phenomena in a water hydraulic cylinder at low-pressure levels [C]∥ Proceedings of the Eighth Scandinavian International Conference on Fluid Power. Tampere, Finland: TUT, 2003: 421-431.
[5] TAKAHASHI H, ITO K, IKEO S. Application of adaptive controller to water hydraulic servo cylinder [C]∥ Proceedings of the 6th JFPS International Symposium on Fluid Power. TSUKUBA, Japan: JFPS, 2005: 432-436.
[6] MAJDIC F, PEZDIRNIK J, KALIN M. An analytical comparison of hydraulic systems based on water and on oil [C]∥ Proceedings of the 7th JFPS International Symposium on Fluid Power. TOYAMA, Japan: JFPS, 2008: 679-684.
[7] KOSKINEN K. Proposals for improving the characteristics of water hydraulic proportional valves using simulation and measurement [D]. Tampere: Tampere University of Technology, 1996: 99-120.
[8] 杨华勇,弓永军,周华.纯水液压控制阀研究进展[J].中国机械工程,2004, 15(15): 1400-1404.
YANG Hua-yong, GONG Yong-jun, ZHOU Hua. Development review of water hydraulic valve [J]. China Mechanical Engineering, 2004, 15(15): 1400-1404.
[9] TAKAHASHI T, YAMASHINA C, MIYAKAWA S. Development of water hydraulic proportional control valve [C]∥ Proceedings of the 4th JFPS International Symposium on Fluid Power. Tokyo, Japan: JFPS, 1999: 549-554.
[10] URATA E, NAKAO Y. Study of a flapper-nozzle system for a water hydraulic servovalve [J]. JSME International Journal Series B, 1998, 41(2): 270-277.
[11] URATA E, YAMASHINA C. Influence of flow force on the flapper of a water hydraulic servovalve [J]. JSME International Journal Series B, 1998, 41(2): 278-285.
[12] URATA E, MIYAKAWA S, YAMASHINA C, et al. Development of a water hydraulic servovalve [J]. JSME International Journal Series B, 1998, 41(2): 286-294.
[13] 弓永军.纯水液压控制阀关键技术研究 [D] .杭州:浙江大学,2005: 61-70.
GONG Yongjun. Investigation into the key problems of water hydraulic control valves [D]. Hangzhou: Zhejiang University, 2005:61-70.
[14] 弓永军,周华,杨华勇.结构参数对先导式纯水溢流阀性能的影响[J].浙江大学学报:工学版,2006, 40(5): 869873.
GONG Yongjun, ZHOU Hua, YANG Huayong. Properties of pilotoperated water hydraulic relief valve with different structure parameters [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(5): 869-873.
[15] 弓永军,周华,杨华勇.阀芯结构对纯水溢流阀抗汽蚀特性的影响研究[J].农业机械学报,2005, 36(8): 50-54.
GONG Yongjun, ZHOU Hua, YANG Huayong. Study on cavitation resistive property of water hydraulic relief valve with different piston structure [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(8): 50-54.
[16] OLSSON H, STRM K J, DEWIT C C, et al. Friction models and friction compensation [J]. European Journal of Control, 1998, 4(3): 176-195.
[17] JANOCHA H, SCHAFER J. Compensation of hysteresis in solidstate actuators [J]. Sensors and Actuators, A, Physical, 1995, (49): 97-102.
[18] HUGHES D, WEN J T. Preisach modeling of piezoceramic and shape memory alloy hysteresis [J]. Smart Materials and Structures, 1997, 6(3): 287-300.
[19] 龚大成,唐志峰,项占琴,等. 基于Preisach理论的GMA迟滞建模与参数辨识[J]. 浙江大学学报:工学版, 2008, 42(3): 425-428.
GONG Da-cheng, TANG Zhi-feng, XIANG Zhan-qin, et al. Modeling and parameter identification of hysteresis in giant magnetostrictive actuator based on Preisach theory[J]. Journal of Zhejiang University: Engineering Science, 2008, 42(3): 425-428.
[20] MAYERGOYZ I D. Mathematical models of hysteresis [J]. Physical Review Letters, 1986, 56(15): 1518-1521.
[21] KRASNOSELSKII M, POKROVSKII A. Systems with hysteresis [M]. Berlin: SpringerVerlag, 1989: 8-37.
[22] TAO Gang, KOLOTOVIC P V. Adaptive control of plants with unknown hysteresis [J]. IEEE Transactions on Automatic Control, 1995, 40(2): 200-213.
[23] WEBB G, KURDILA A, LAGOUDAS D. Adaptive hysteresis model for model reference control with actuator hysteresis [J]. Journal of Guidance, Control, and Dynamic, 2000, 23(3): 459-465.
[24] WANG Qingqing, SU Chunyi. Robust adaptive control of a class of nonlinear systems including actuator hysteresis with PrandtlIshlinskii presentations [J]. Automatica, 2006, (42): 859-867.
[25] GE Ping, JOUANEH M. Tracking control of a piezoceramic actuator [J]. IEEE Transactions on Control Systems Technology, 1996, 4(3): 209-216.
[26] MITTAL S, MEAQ C H. Hysteresis compensation in electromagnetic actuator through Preisach model inversion [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(4): 394-409.
[27] 贾振元,王福吉,张菊,等. 超磁致伸缩执行器磁滞非线性建模与控制[J]. 机械工程学报, 2005, 41(7): 131-135.
JIA Zhenyuan, WANG Fuji, ZHANG Ju, et al. Hysteresis nonlinearity modeling and control of giant magnetostrictive actuator [J]. Chinese Journal of Mechanical Engineering, 2005, 41(7): 131-135.

[1] KONG Xiao-wu, FANG Jin-hui, PU Zeng-kun. Compatibility design of active proportional cartridge valve with system conditions[J]. J4, 2014, 48(1): 15-20.