Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (2): 231-239    DOI: 10.3785/j.issn.1008-973X.2026.02.001
    
Relationship between atmospheric stability and wind parameters in onshore wind farm clusters
Shulin YANG(),Qiang WANG*(),Kun LUO,Jianren FAN
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3330KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The weather research and forecasting (WRF) model was employed to study the relationship between atmospheric stability and wind parameters in onshore wind farm clusters under different terrains. Results show that neutral atmospheric conditions predominate in mountainous regions, whereas strong stable and strong unstable conditions are frequent in gently sloping plains. Under unstable conditions, thermal factors constitute the primary drivers of vertical wind speed fluctuations and turbulence, with terrain variations as secondary factors and comparable mixing capabilities. In contrast, under stable conditions, terrain plays a dominant role in modulating vertical wind speed fluctuations and turbulence enhancement, with mountainous regions exhibiting significantly higher vertical mixing capacity than gently sloping plains. Atmospheric stability modulates wind speed and air density, thereby altering wind power density. The average wind power density under neutral conditions is 4 times and 10 times higher than that under strong stable and strong unstable conditions, respectively.



Key wordswind resource assessment      weather research and forecasting (WRF) model      atmospheric stability      wind parameters      wind farm clusters     
Received: 09 February 2025      Published: 03 February 2026
CLC:  TK 81  
Fund:  国家自然科学基金资助项目(52576235,52206281);浙江省自然科学基金资助项目(LY24E060002);航空科学基金资助项目(ASFC-20240007076002).
Corresponding Authors: Qiang WANG     E-mail: china_yangshulin@163.com;zjuqw@zju.edu.cn
Cite this article:

Shulin YANG,Qiang WANG,Kun LUO,Jianren FAN. Relationship between atmospheric stability and wind parameters in onshore wind farm clusters. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 231-239.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.02.001     OR     https://www.zjujournals.com/eng/Y2026/V60/I2/231


陆上风电基地大气稳定度与风参数的关联性研究

采用天气研究与预报(WRF)模式,针对不同地形下的陆上风电基地,开展大气稳定度与风特征参数的关联性研究. 结果表明,山地区域以中性大气状态为主,缓坡平原易呈现强稳定和强不稳定状态. 在不稳定状态下,热力因素主导垂直风速脉动和湍流增强,不同地形对大气的掺混能力近似;在稳定状态下,地形主导垂直风速脉动和湍流增强,山地区域的垂直掺混能力显著高于缓坡平原. 大气稳定度会调制风速和空气密度,改变风功率密度;中性状态下的平均风功率密度分别是强稳定和强不稳定状态下的4倍和10倍.


关键词: 风资源评估,  天气研究与预报(WRF)模式,  大气稳定度,  风参数,  风电基地 
Fig.1 Elevation of wind farm clusters, and three nested grids of weather research and forecasting model
Fig.2 Vertical air movement trends under different atmospheric stability conditions
测风塔RMSE/(m?s?1)RIA
1822#1.370.860.92
1823#1.460.840.91
Tab.1 Accuracy indicators for annual wind speed simulation at meteorological towers
Fig.3 Atmospheric stability distribution at virtual meteorological towers
Fig.4 Scatterplot and histogram of wind speed variation with atmospheric stability
Fig.5 Scatterplot and parametric kernel-density-estimated distribution of air density versus wind speed
Fig.6 Box plot of wind power density distribution with atmospheric stability
Fig.7 Scatterplot and parametric kernel-density-estimated distribution of vertical wind speed versus wind speed
Fig.8 Scatterplot and parametric kernel-density-estimated distribution of turbulence intensity versus wind speed
[1]   DAYAL K K, BELLON G, CATER J E, et al High-resolution mesoscale wind-resource assessment of Fiji using the weather research and forecasting (WRF) model[J]. Energy, 2021, 232: 121047
doi: 10.1016/j.energy.2021.121047
[2]   GIANNAROS T M, MELAS D, ZIOMAS I Performance evaluation of the weather research and forecasting (WRF) model for assessing wind resource in Greece[J]. Renewable Energy, 2017, 102: 190- 198
doi: 10.1016/j.renene.2016.10.033
[3]   王强, 罗坤, 吴春雷, 等 耦合风电场参数化模型的天气预报模式对风资源的评估和验证[J]. 浙江大学学报: 工学版, 2019, 53 (8): 1572- 1581
WANG Qiang, LUO Kun, WU Chunlei, et al Wind resource assessment of weather research and forecasting model coupled with wind farm parameterization model[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (8): 1572- 1581
[4]   WU C, WANG Q, LUO K, et al A coupled turbine-interaction wind farm parameterization in the weather research and forecasting model[J]. Energy Conversion and Management, 2023, 283: 116919
doi: 10.1016/j.enconman.2023.116919
[5]   穆延非, 王强, 罗坤, 等 基于中尺度WRF模式的海上风电场尾流影响评估[J]. 中国电机工程学报, 2022, 42 (Suppl.1): 193- 203
MU Yanfei, WANG Qiang, LUO Kun, et al Impact assessment of offshore wind farm wakes based on mesoscale WRF model[J]. Proceedings of the CSEE, 2022, 42 (Suppl.1): 193- 203
[6]   JIN J, LI Y, YE L, et al Integration of atmospheric stability in wind resource assessment through multi-scale coupling method[J]. Applied Energy, 2023, 348: 121402
doi: 10.1016/j.apenergy.2023.121402
[7]   RADÜNZ W C, SAKAGAMI Y, HAAS R, et al The variability of wind resources in complex terrain and its relationship with atmospheric stability[J]. Energy Conversion and Management, 2020, 222: 113249
doi: 10.1016/j.enconman.2020.113249
[8]   PÉREZ C, RIVERO M, ESCALANTE M, et al Influence of atmospheric stability on wind turbine energy production: a case study of the coastal region of yucatan[J]. Energies, 2023, 16 (10): 4134
doi: 10.3390/en16104134
[9]   GUO N, ZHANG M, LI B, et al Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104548
doi: 10.1016/j.jweia.2021.104548
[10]   DIALLO M, KWAK G, TÜZÜNOGLU S, et al A workflow for including atmospheric stability effects in wind resource and yield assessment and its evaluation against wind measurements and SCADA[J]. Journal of Physics: Conference Series, 2023, 2507 (1): 012018
doi: 10.1088/1742-6596/2507/1/012018
[11]   SUBRAMANIAN B, CHOKANI N, ABHARI R S Impact of atmospheric stability on wind turbine wake evolution[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 174- 182
doi: 10.1016/j.jweia.2018.03.014
[12]   DÖRENKÄMPER M, WITHA B, STEINFELD G, et al The impact of stable atmospheric boundary layers on wind-turbine wakes within offshore wind farms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144: 146- 153
doi: 10.1016/j.jweia.2014.12.011
[13]   HAN X, LIU D, XU C, et al Atmospheric stability and topography effects on wind turbine performance and wake properties in complex terrain[J]. Renewable Energy, 2018, 126: 640- 651
doi: 10.1016/j.renene.2018.03.048
[14]   CAÑADILLAS B, FOREMAN R, BARTH V, et al Offshore wind farm wake recovery: airborne measurements and its representation in engineering models[J]. Wind Energy, 2020, 23 (5): 1249- 1265
doi: 10.1002/we.2484
[15]   RADÜNZ W C, SAKAGAMI Y, HAAS R, et al Influence of atmospheric stability on wind farm performance in complex terrain[J]. Applied Energy, 2021, 282: 116149
doi: 10.1016/j.apenergy.2020.116149
[16]   韩星星, 许昌, Wenzhong Shen, 等 大气稳定度对山地风力机功率影响研究[J]. 工程热物理学报, 2021, 42 (7): 1733- 1742
HAN Xingxing, XU Chang, Wenzhong Shen, et al A study of the influence of atmospheric stability on wind turbine power in complex terrain[J]. Journal of Engineering Thermophysics, 2021, 42 (7): 1733- 1742
[17]   BUSINGER J A, WYNGAARD J C, IZUMI Y, et al Flux-profile relationships in the atmospheric surface layer[J]. Journal of the Atmospheric Sciences, 1971, 28 (2): 181- 189
doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
[18]   MOHAN M, SIDDIQUI T A Analysis of various schemes for the estimation of atmospheric stability classification[J]. Atmospheric Environment, 1998, 32 (21): 3775- 3781
doi: 10.1016/S1352-2310(98)00109-5
[19]   STULL R B. An introduction to boundary layer meteorology [M]. Dordrecht: Kluwer Academic Publishers, 1988.
[20]   GRYNING S E, BATCHVAROVA E, BRÜMMER B, et al On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer[J]. Boundary-Layer Meteorology, 2007, 124 (2): 251- 268
doi: 10.1007/s10546-007-9166-9
[21]   SONG J L, LI J W, FLAY R G J Field measurements and wind tunnel investigation of wind characteristics at a bridge site in a Y-shaped valley[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104199
doi: 10.1016/j.jweia.2020.104199
[22]   ROTACH M W, GOHM A, LANG M N, et al On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain[J]. Frontiers in Earth Science, 2015, 3: 76
[23]   KIM H G, KANG Y H, KIM J Y Evaluation of wind resource potential in mountainous region considering morphometric terrain characteristics[J]. Wind Engineering, 2017, 41 (2): 114- 123
doi: 10.1177/0309524X16689445
[24]   WAGNER J S, GOHM A, ROTACH M W The impact of valley geometry on daytime thermally driven flows and vertical transport processes[J]. Quarterly Journal of the Royal Meteorological Society, 2015, 141 (690): 1780- 1794
doi: 10.1002/qj.2481
[25]   ABKAR M, PORTÉ-AGEL F Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study[J]. Physics of Fluids, 2015, 27 (3): 035104
doi: 10.1063/1.4913695
[1] Qiang WANG,Kun LUO,Chun-lei WU,Jian-ren FAN. Wind resource assessment of weather research and forecasting model coupled with wind farm parameterization model[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1572-1581.