|
|
Topological design of brain-like reservoir based on scale-free network |
Xuanyun LIU1( ),Ying YAN1,Zhiyong YU1,2,3,Fangwan HUANG1,2,3,*( ) |
1. College of Computer and Data Sciences, Fuzhou University, Fuzhou 350108, China 2. Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350108, China 3. Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350108, China |
|
|
Abstract To optimize the reservoir design of echo state networks (ESN), the Chung-Lu (CL) construction algorithm based on random matrix theory was applied to generate flexible and efficient scale-free networks. In response to the degree deviation that occurs during the construction process, random pruning or degree pruning was used to improve the scale-free network. The robustness of the reservoir was improved by simulating random or targeted attacks. Experimental results show that the CL algorithm with a pruning mechanism not only constructs a scale-free network with power-law property, but also has significantly better construction speed and prediction performance than the baseline algorithms, and the effect of random pruning was better than that of degree pruning. Compared with the optimal result of the baseline algorithm, the running time and prediction error of ESN constructed by the CL algorithm based on random pruning were at least reduced by 14.2% and 10.6%.
|
Received: 03 September 2024
Published: 25 July 2025
|
|
Fund: 国家自然科学基金资助项目(62332014);福建省引导性资助项目(2020H0008);福建省促进海洋与渔业产业高质量发展专项资金(FJHYF-ZH-2023-02). |
Corresponding Authors:
Fangwan HUANG
E-mail: 3167131927@qq.com;hfw@fzu.edu.cn
|
基于无标度网络的类脑储备池拓扑设计
为了优化回声状态网络(ESN)储备池的设计,应用基于随机矩阵理论的Chung-Lu(CL)构造算法生成灵活且高效的无标度网络. 针对在构建过程中出现的度值偏差,使用随机剪枝或度值剪枝改进无标度网络. 通过模拟随机攻击或针对性攻击来提高储备池的鲁棒性. 实验结果表明,加入剪枝机制的CL算法构造了具有幂律性质的无标度网络,构建速度和预测性能均明显优于基线算法,随机剪枝的效果优于度值剪枝. 相比基线算法的最优结果,基于随机剪枝的CL算法构建的ESN的运行时间和预测误差最少降低了14.2%和10.6%.
关键词:
无标度网络,
类脑储备池,
剪枝机制,
回声状态网络,
时间序列预测
|
|
[1] |
FOLGHERAITER M, YSKAK A, YESSIRKEPOV S One-shot bipedal robot dynamics identification with a reservoir-based RNN[J]. IEEE Access, 2023, 11: 50180- 50194
doi: 10.1109/ACCESS.2023.3277977
|
|
|
[2] |
WANG H, LONG X, LIU X X FastESN: fast echo state network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (12): 10487- 10501
doi: 10.1109/TNNLS.2022.3167466
|
|
|
[3] |
LIN J, CHUNG F L, WANG S A fast parametric and structural transfer leaky integrator echo state network for reservoir computing[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54 (5): 3257- 3269
doi: 10.1109/TSMC.2024.3358567
|
|
|
[4] |
AKIYAMA T, TANAKA G Computational efficiency of multi-step learning echo state networks for nonlinear time series prediction[J]. IEEE Access, 2022, 10: 28535- 28544
doi: 10.1109/ACCESS.2022.3158755
|
|
|
[5] |
VIEHWEG J, WORTHMANN K, MÄDER P Parameterizing echo state networks for multi-step time series prediction[J]. Neurocomputing, 2023, 522: 214- 228
doi: 10.1016/j.neucom.2022.11.044
|
|
|
[6] |
HUANG L L, ZHANG Y, XIANG J H, et al Extreme multistability in a hopfield neural network based on two biological neuronal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (11): 4568- 4572
|
|
|
[7] |
BEHERA R K, NAIK D, RAMESH D, et al MR-IBC: mapreduce-based incremental betweenness centrality in large-scale complex networks[J]. Social Network Analysis and Mining, 2020, 10 (1): 25
doi: 10.1007/s13278-020-00636-9
|
|
|
[8] |
ALESSANDRETTI L, NATERA OROZCO L G, SABERI M, et al Multimodal urban mobility and multilayer transport networks[J]. Environment and Planning B: Urban Analytics and City Science, 2023, 50 (8): 2038- 2070
doi: 10.1177/23998083221108190
|
|
|
[9] |
杨旭华, 王磊, 叶蕾, 等 基于节点相似性和网络嵌入的复杂网络社区发现算法[J]. 计算机科学, 2022, 49 (3): 121- 128 YANG Xuhua, WANG Lei, YE Lei, et al Complex network community detection algorithm based on node similarity and network embedding[J]. Computer Science, 2022, 49 (3): 121- 128
doi: 10.11896/jsjkx.210200009
|
|
|
[10] |
楼洋, 李均利, 李升, 等 复杂网络能控性鲁棒性研究进展[J]. 自动化学报, 2022, 48 (10): 2374- 2391 LOU Yang, LI Junli, LI Sheng, et al Recent progress in controllability robustness of complex networks[J]. Acta Automatica Sinica, 2022, 48 (10): 2374- 2391
|
|
|
[11] |
KAWAI Y, PARK J, ASADA M A small-world topology enhances the echo state property and signal propagation in reservoir computing[J]. Neural Networks, 2019, 112: 15- 23
doi: 10.1016/j.neunet.2019.01.002
|
|
|
[12] |
WANG Q, DU C, GENG Y, et al Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks[J]. Chaos, Solitons and Fractals, 2020, 130: 109453
doi: 10.1016/j.chaos.2019.109453
|
|
|
[13] |
CHENG J, WU X, ZHOU M, et al A novel method for detecting new overlapping community in complex evolving networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49 (9): 1832- 1844
doi: 10.1109/TSMC.2017.2779138
|
|
|
[14] |
TSIOTAS D Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness[J]. Scientific Reports, 2020, 10: 10630
doi: 10.1038/s41598-020-67156-6
|
|
|
[15] |
SIDOROV S, MIRONOV S, GRIGORIEV A, et al An investigation into the trend stationarity of local characteristics in media and social networks[J]. Systems, 2022, 10 (6): 249
doi: 10.3390/systems10060249
|
|
|
[16] |
WANG B, ZHAO Y, HU F, et al Anomaly detection with subgraph search and vertex classification preprocessing in Chung-Lu random networks[J]. IEEE Transactions on Signal Processing, 2018, 66 (20): 5255- 5268
doi: 10.1109/TSP.2018.2866847
|
|
|
[17] |
GLOS A Spectral similarity for Barabási–Albert and Chung-Lu models[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 516: 571- 578
doi: 10.1016/j.physa.2018.10.050
|
|
|
[18] |
FASINO D, TONETTO A, TUDISCO F Generating large scale-free networks with the Chung-Lu random graph model[J]. Networks, 2021, 78 (2): 174- 187
doi: 10.1002/net.22012
|
|
|
[19] |
WANG W, LIANG J, LIU R, et al A robust variable selection method for sparse online regression via the elastic net penalty[J]. Mathematics, 2022, 10 (16): 2985
doi: 10.3390/math10162985
|
|
|
[20] |
WANG L, SU Z, QIAO J, et al A pseudo-inverse decomposition-based self-organizing modular echo state network for time series prediction[J]. Applied Soft Computing, 2022, 116: 108317
doi: 10.1016/j.asoc.2021.108317
|
|
|
[21] |
WANG X, WANG X, MA B, et al High precision error prediction algorithm based on ridge regression predictor for reversible data hiding[J]. IEEE Signal Processing Letters, 2021, 28: 1125- 1129
doi: 10.1109/LSP.2021.3080181
|
|
|
[22] |
TAN Y X Dynamics analysis of Mackey-Glass model with two variable delays[J]. Mathematical Biosciences and Engineering, 2020, 17 (5): 4513- 4526
doi: 10.3934/mbe.2020249
|
|
|
[23] |
FU S, FANG X, CHEN X. Hybrid enhanced echo state network for nonlinear prediction of multivariate chaotic time series [C]// Proceedings of the IEEE International Conference on Networking, Sensing and Control. Shanghai: IEEE, 2022: 1–6.
|
|
|
[24] |
YU Y, WANG Y, LUO Z, et al Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University, 2022, 62 (1): 98- 104
|
|
|
[25] |
DONG Z, DUAN Y, ZHOU Y, et al Weight-adaptive channel pruning for CNNs based on closeness-centrality modeling[J]. Applied Intelligence, 2024, 54 (1): 201- 215
doi: 10.1007/s10489-023-05164-5
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|