Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (6): 1284-1292    DOI: 10.3785/j.issn.1008-973X.2025.06.019
    
Simulation of shaped geometric error for variable curvature composite propeller blade
Yongjie BAO1(),Leqiang ZHANG1,Zhen LIU1,Xiukun JI2,Yuxing YANG1,*()
1. College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
2. College of Naval Architecture and Ocean Engineering, Dalian Maritime University, Dalian 116026, China
Download: HTML     PDF(1425KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

There are shaped geometric error in the prepreg forming process due to the variable curvature, variable thickness and laminated characteristics of composite propeller blades. In order to clarify the influence of blade curvature and ply strain on the geometric error of prepreg forming, a numerical model of the prepreg placement process inside the blade mold was established by obtaining point cloud data through three-dimensional scanning of the blade layer. The finite element simulation of the prepreg placement process was carried out. The effectiveness of the proposed laying simulation model was verified by comparing the results of layer strain tests with the simulation results. An evaluation method based on the accumulation of deformation error in the normal vector direction was proposed, and the interlayer errors from the laying test results and the simulation results were extracted. The interlayer errors were used to analyze the shaped geometric error of the blade with considering the blade curvature characteristics. Results showed that the lateral difference of the shaped geometric error between the simulation and the experiment was about 10.18%, and the longitudinal difference was about 14.22%. The distribution pattern of shaped geometric error of the blade was consistent with that of the strain distribution, and the influence of the fluctuation of the curvature on the shaped geometric error was greater than that caused by the difference in the curvature itself. The distribution of the shaped geometric error tended to be V-shaped as the number of layers increased, and the influence of curvature fluctuation became more and more obvious.



Key wordsshaped geometric error      prepreg ply      composite material      propeller blade      normal vector deformation     
Received: 10 April 2024      Published: 30 May 2025
CLC:  TB 332  
Fund:  国家自然科学基金资助项目(52301359);辽宁省应用基础研究资助项目(2022JH2,101300221).
Corresponding Authors: Yuxing YANG     E-mail: yongjie@dlmu.edu.cn;yangyuxing@dlmu.edu.cn
Cite this article:

Yongjie BAO,Leqiang ZHANG,Zhen LIU,Xiukun JI,Yuxing YANG. Simulation of shaped geometric error for variable curvature composite propeller blade. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1284-1292.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.06.019     OR     https://www.zjujournals.com/eng/Y2025/V59/I6/1284


变曲率复合材料螺旋桨叶的赋形几何误差仿真

复合材料螺旋桨叶的变曲率、变厚度和叠层特征会导致预浸料赋形过程中存在几何误差. 为了明确叶片曲率与铺层应变对赋形几何误差的影响规律,通过对桨叶铺层进行三维扫描获取点云数据,建立桨叶模具预浸料铺放过程的数值模型,对预浸料铺放过程进行有限元模拟. 通过对比铺层应变试验和仿真结果验证所提出的铺放仿真模型的有效性. 提出基于法向量方向变形误差累积的评价方法,对铺层试验和仿真结果进行层间误差提取,并结合叶片曲率特征分析桨叶赋形误差. 结果表明,仿真与试验的赋形几何误差的横向偏差约为10.18%、纵向偏差约为14.22%. 桨叶赋形几何误差分布形式与其铺放过程应变分布规律一致,曲率的波动性对赋形几何误差的影响大于曲率自身差异性的影响. 赋形几何误差分布随铺层数量增加趋于V型特征,且受曲率波动性的影响越来越明显.


关键词: 赋形几何误差,  预浸料铺层,  复合材料,  螺旋桨叶,  法向量变形 
参数数值
纵向弹性模量$ {E_1}/{\rm{GPa}} $125.00
横向弹性模量$ {E_2}/{\rm{GPa}} $9.00
面内剪切模量$ {G_{12}}/{\rm{GPa}} $4.60
面内泊松比$ {v_{12}} $0.32
面外泊松比$ {v_{23}} $0.46
纵向拉伸强度$ {X_{{\mathrm{T}}}}/{\rm{MPa}} $176 0.00
纵向压缩强度$ {X_{{\mathrm{C}}}}/{\rm{MPa}} $105 0.00
横向拉伸强度$ {Y_{{\mathrm{T}}}}/{\rm{MPa}} $51.00
横向压缩强度$ {Y_{{\mathrm{C}}}}/{\rm{MPa}} $130.00
面内剪切强度$ {S_{12}}/{\rm{MPa}} $60.00
密度$ \rho /({{\mathrm{g}}\cdot{\mathrm{c}}}{{{\mathrm{m}}}^{-3}}) $1.60
Tab.1 Properties of T300 unidirectional carbon fiber prepreg[4]
Fig.1 Size of single-layer prepreg test piece
Fig.2 Finite element model of lay-up of prepreg for composite materials
Fig.3 Strain test of characteristic point during lay-up process of prepreg
Fig.4 Prepreg layer of composite propeller blade
Fig.5 Three-dimensional scanning test of composite propeller blade prepreg lay-up
Fig.6 Unified coordinate system of shaped geometric error comparison of prepreg layer
Fig.7 Shaped geometric error analysis feature points of composite propeller blade lay-up
Fig.8 Normal vector orientation deformation evaluation method of prepreg lay-up error analysis
Fig.9 Cumulative error in laying process of composite propeller blade prepreg
Fig.10 Floating of feature points in laying process of composite propeller blade prepreg
Fig.11 Strain at characteristic points during prepreg lay-up
Fig.12 Distribution law of shaped geometric error, strain and blade curvature
[1]   SELVARAJU DR S Application of composite in marine industry[J]. Journal of Engineering Research and Studies, 2011, 2: 89- 91
[2]   MARSH G A new start for marine propellers?[J]. Reinforced Plastics, 2004, 48 (11): 34- 38
doi: 10.1016/S0034-3617(04)00493-X
[3]   洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化 [D]. 哈尔滨: 哈尔滨工业大学, 2011.
HONG Yi. Structure design and hydroelastic optimization of high performance composite propeller [D]. Harbin: Harbin Institute of Technology, 2010.
[4]   周鑫, 童喆益, 杨文凯, 等 大厚度船用复合材料螺旋桨桨叶设计与成型工艺[J]. 船舶工程, 2022, 44 (9): 24- 28
ZHOU Xin, TONG Zheyi, YANG Wenkai, et al Design and molding process of large thichness marine composite propeller blade[J]. Ship Engineering, 2022, 44 (9): 24- 28
[5]   杨文志, 朱锡, 陈悦, 等 复合材料螺旋桨RTM成型工艺研究[J]. 材料科学与工艺, 2015, 23 (6): 87- 92
YANG Wenzhi, ZHU Xi, CHEN Yue, et al Research on RTM molding process of composite propeller[J]. Materials Science and Technology, 2015, 23 (6): 87- 92
[6]   SEARLE T, CHUDLEY J, SHORT D, et al Are composite propellers the way forward for small boats[J]. Mater World, 1994, (2): 69- 70
[7]   LIN C C, LEE Y J, HUNG C S Optimization and experiment of composite marine propellers[J]. Composite Structures, 2009, 89 (2): 206- 215
doi: 10.1016/j.compstruct.2008.07.020
[8]   王晓飞, 蔡智奇, 文秀芳, 等 风轮叶片树脂与成型工艺研究进展[J]. 化工新型材料, 2012, 40 (1): 31- 34
WANG Xiaofei, CAI Zhiqi, WEN Xiufang, et al Advance in studies of thermosetting resin and molding process of rotor blades[J]. New Chemical Materials, 2012, 40 (1): 31- 34
doi: 10.3969/j.issn.1006-3536.2012.01.010
[9]   张鸿名. 船用复合材料螺旋桨成型工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2009.
ZHANG Hongming. Manufacture and technique of marine composite material propeller [D]. Harbin: Harbin Institute of Technology, 2009.
[10]   陆九如. 碳纤维复合材料薄壁曲面构件纤维铺放方法研究 [D]. 上海: 东华大学, 2023.
LU Jiuru. Investigation of carbon fiber placement method for thin-walled composite shells [D]. Shanghai: Donghua University, 2023.
[11]   宋超, 李勇, 还大军, 等. 航空发动机复合材料叶片曲面可铺性研究[J]. 航空制造技术, 2015, 58(增2): 63–66.
SONG Chao, LI Yong, HUAN Dajun, et al. Study on placeability of composite blade surface of aeroengine [J]. Aeronautical Manufacturing Technology, 2015, 58(Suppl.2): 63–66.
[12]   GAN M C, TAN S T, CHAN K W Flattening developable bi-parametric surfaces[J]. Computers and Structures, 1996, 58 (4): 703- 708
[13]   AZARIADIS P, ASPRAGATHOS N Design of plane developments of doubly curved surfaces[J]. Computer-Aided Design, 1997, 29 (10): 675- 685
doi: 10.1016/S0010-4485(97)00013-4
[14]   王立冬. 碳纤维预浸料层间滑移性能研究及在热隔膜成型中的应用[D]. 上海: 上海交通大学, 2020.
WANG Lidong. Investigation on inter-Ply slipping behavior of carbon fiber prepreg and its application in hot diaphragm forming [D]. Shanghai: Shanghai Jiao Tong University, 2020.
[15]   赵盼, 史耀耀, 康超, 等 复合材料机器人纤维铺放工艺参数优化[J]. 西北工业大学学报, 2018, 36 (4): 693- 700
ZHAO Pan, SHI Yaoyao, KANG Chao, et al Optimization of process parameters for robotic fibre placement[J]. Journal of Northwestern Polytechnical University, 2018, 36 (4): 693- 700
doi: 10.3969/j.issn.1000-2758.2018.04.013
[16]   柯映林, 曲巍崴, 李江雄, 等 碳纤维复合材料结构件自动铺放技术与装备研究进展[J]. 机械工程学报, 2023, 59 (20): 401- 435
KE Yinglin, QU Weiwei, LI Jiangxiong, et al Researches on automated placement technologies and equipment for carbon fiber reinforced composites: a state-of-the-art review[J]. Journal of Mechanical Engineering, 2023, 59 (20): 401- 435
doi: 10.3901/JME.2023.20.401
[17]   秦永利, 祝颖丹, 范欣愉, 等 纤维曲线铺放制备变刚度复合材料层合板的研究进展[J]. 玻璃钢/复合材料, 2012, (1): 61- 66
QIN Yongli, ZHU Yingdan, FAN Xinyu, et al Research and development on variable-stiffness composite laminates manufactured by variable angle tow placement[J]. Fiber Reinforced Plastics/Composites, 2012, (1): 61- 66
[18]   BRAMPTON C J, WU K C, KIM H A New optimization method for steered fiber composites using the level set method[J]. Structural and Multidisciplinary Optimization, 2015, 52 (3): 493- 505
doi: 10.1007/s00158-015-1256-6
[19]   CHEN X, WU Z, NIE G, et al Buckling analysis of variable angle tow composite plates with a through-the-width or an embedded rectangular delamination[J]. International Journal of Solids and Structures, 2018, 138: 166- 180
doi: 10.1016/j.ijsolstr.2018.01.010
[20]   LIGUORI F S, ZUCCO G, MADEO A, et al Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach[J]. Thin-Walled Structures, 2019, 138: 183- 198
doi: 10.1016/j.tws.2019.01.035
[21]   都涛. 基于碳纤维预浸料铺放的工艺参数分析与试验研究[D]. 杭州: 浙江大学, 2018.
DU Tao. Analysis and experiment study of lay-up process parameters based on carbon fiber prepreg lay-up [D]. Hangzhou: Zhejiang University, 2018.
[22]   LUKASZEWICZ D H A. Optimisation of high-speed automated layup of thermoset carbon-fiber reimpregnates [D]. Bristol: University of Bristol, 2011.
[23]   AIZED T, SHIRINZADEH B Robotic fiber placement process analysis and optimization using response surface method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55 (1): 393- 404
[24]   LI K, LIU X, JIN Y, et al Structural strength and laminate optimization of composite connecting bracket in manned spacecraft using a genetic algorithm[J]. Applied Composite Materials, 2019, 26 (2): 591- 604
doi: 10.1007/s10443-018-9736-7
[25]   孙海涛, 熊鹰, 黄政 复合材料螺旋桨纤维铺层的影响及预变形设计[J]. 华中科技大学学报: 自然科学版, 2014, 42 (5): 116- 121
SUN Haitao, XIONG Ying, HUANG Zheng Effect of stacking mode of composite laminates and pre-deformed design of composite marine propellers[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42 (5): 116- 121
[26]   BLASQUES J P, BERGGREEN C, ANDERSEN P Hydro-elastic analysis and optimization of a composite marine propeller[J]. Marine Structures, 2010, 23 (1): 22- 38
doi: 10.1016/j.marstruc.2009.10.002
[27]   卢秉贺, 李萍 基于Hypersizer的复合材料结构铺层设计和铺层过渡设计[J]. 科学技术与工程, 2011, 11 (22): 5482- 5485
LU Binghe, LI Ping Stacking design and stacking transition design of composite structure based on hypersizer[J]. Science Technology and Engineering, 2011, 11 (22): 5482- 5485
doi: 10.3969/j.issn.1671-1815.2011.22.062
[1] Zhuang TIAN,Guan-yan XIAO,Wei-liang JIN,Jin XIA,Xin CHENG. Diffusion model of multi ions in concrete based on composite theory[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1393-1401.
[2] Shou-jing YAN,Yang-yang WANG,Feng-xia CHI,Xue LUO. Characterization and synthesis of hollow glass microspheres/nano-TiO2 composite material[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 713-719.
[3] LIU Su su, YU Yin. Statebased peridynamic modeling of nonlinear behavior and progressive damage of composites[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 993-1000.
[4] CHEN Yan, GAO Shang jun, YU Zhe feng, WANG Hai. Delamination threshold load of low velocity impact of composite wing box[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 186-192.