Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (12): 2567-2574    DOI: 10.3785/j.issn.1008-973X.2024.12.016
    
Cryogenic distillation system for nitrogen production based on Stirling cryocooler
Zeming WANG1,2(),Daming SUN2,*(),Yuan ZHUANG2,Qie SHEN2,Tianxiang WANG3
1. Polytechnic Institute of Zhejiang University, Hangzhou 310058, China
2. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310058, China
3. State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100190, China
Download: HTML     PDF(1783KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cryogenic distillation system for nitrogen production using Stirling cryocooler with large cooling capacity was proposed, aiming at the problem that the relevant technology of distributed liquid nitrogen supply system was not mature. According to different operating conditions of the system, three kinds of nitrogen production processes were set up based on Aspen HYSYS. The numerical simulation analysis of each process was carried out under the conditions of different air inlet temperatures, compressed air precooling temperatures and input cooling capacities of cryocooler. The liquefaction yield, nitrogen extraction rate and energy consumption were optimized. The results showed that using low pressure intake to compress air, using freeze-drying to purify raw gas, and then using atmospheric pressure rectification was the optimal process. Under the operating conditions of inlet temperature of 10 ℃, initial precooling temperature of 25 ℃ and input cooling capacity of 1 kW, the liquid nitrogen yield can reach 10.38 L/h, the nitrogen extraction rate was as high as 62.19%, and the specific power consumption was 1.105 kW·h/L. Compared with other small liquid nitrogen production systems, this system has the advantages of high yield, high nitrogen extraction rate and low specific power consumption.



Key wordsStirling cryocooler      cryogenic distillation      nitrogen production system      air purification      liquid nitrogen     
Received: 16 November 2023      Published: 25 November 2024
CLC:  TB 657.8  
Corresponding Authors: Daming SUN     E-mail: 22160199@zju.edu.cn;sundaming@zju.edu.cn
Cite this article:

Zeming WANG,Daming SUN,Yuan ZHUANG,Qie SHEN,Tianxiang WANG. Cryogenic distillation system for nitrogen production based on Stirling cryocooler. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2567-2574.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.12.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I12/2567


采用斯特林制冷机的低温精馏制氮系统

针对分布式液氮供应系统相关技术仍不成熟的问题,提出采用大冷量斯特林制冷机的低温精馏制氮系统. 根据不同的系统运行条件,基于Aspen HYSYS搭建3种精馏制氮流程;对每个流程在不同的空气入口温度、压缩空气初步预冷温度、制冷机输入冷量条件下进行数值模拟分析. 对液氮产率、氮提取率、单位产量能耗等进行优化计算,结果表明,采用低压进气,应用冷冻干燥法纯化原料气,之后进行常压精馏是最优流程;在入口温度为10 ℃,初步预冷温度为25 ℃,输入冷量为1 kW的运行工况下,系统液氮产率可达10.38 L/h,氮提取率高达62.19%,比功耗为1.105 kW·h/L. 相对于其他小型液氮生产系统,新系统具有产率大、氮提取率高、比功耗低等显著优点.


关键词: 斯特林制冷机,  低温精馏,  制氮系统,  空气纯化,  液氮 
Fig.1 Schematic diagram of small cryogenic distillation system for liquid nitrogen production
Fig.2 Schematic diagram of 3D model of high pressure intake-atmospheric distillation process
Fig.3 Computational model of simple distillation column
Fig.4 Economic balance results of distillation column
Fig.5 Liquid nitrogen yield curves with preliminary precooling temperature and refrigerator input cooling capacity for process 1 and 2
Fig.6 Liquid nitrogen yield and nitrogen extraction rate curves with refrigerator input cooling capacity for process 3
Fig.7 Nitrogen extraction rate curves with preliminary precooling temperature and refrigerator input cooling capacity for process 1 and 2
Fig.8 Energy consumption curves with preliminary precooling temperature and refrigerator input cooling capacity
Fig.9 Power consumption curves of compression equipment and preliminary precooling equipment with refrigerator input cooling capacity under different air inlet temperatures
Fig.10 Liquid nitrogen yield and energy consumption curves with refrigerator input cooling capacity for each process
系统/设备
参考来源
气体纯化和
制冷技术
$q_V^{{\mathrm{LN}}_2} $/(L·h?1)SEC/(kW·h·L?1)P/%
流程1精馏-Stirling10.381.11>99.5
流程2精馏-Stirling10.631.36**>99.5
流程3精馏-Stirling9.851.53**>99.5
Litter[9]PSA-MRJT0.252.56*99.5
Wang等[10]PSA-MRJT1.122.68**98.0**
Wang等[10]精馏-MRJT0.604.5997.5
郭浩等[11]PSA-MRJT5.301.77*98.0
Caughley等[14]PSA-脉冲管12.101.98*
林诗燕[15]PSA-Stirling7.701.46*99.9
CNP 120[16]PSA-(G-M)5.003.20>99.0
StirLITE[17]PSA-Stirling3.502.29*98.0
LN130B[18]PSA-(G-M)5.423.28>99.0
LNP 120[19]PSA-(G-M)5.002.50*98.0
Tab.1 Comparison of performance of small liquid nitrogen production systems
[1]   QY Research. 低温液体行业研究报告[EB/OL]. (2022-03-31)[2023-05-30]. https://www.qyresearch.com.cn/news/cryogenic-liquid-i0888.html.
[2]   QY Research. 液氮市场分析[EB/OL]. (2023-09-25)[2023-09-30]. https://www.qyresearch.com.cn/news/liquid-nitrogen-i06633.html.
[3]   汪青青, 芮明义, 周祥明, 等 液氮损失原因分析及控制措施[J]. 冶金动力, 2023, (1): 46- 48
WANG Qingqing, RUI Mingyi, ZHOU Xiangming, et al Cause analysis and control measures of liqiud nitrogen loss[J]. Metallurgical Power, 2023, (1): 46- 48
doi: 10.3969/j.issn.1006-6764.2023.1.yjdl202301012
[4]   袭凤君, 胥波, 田现德, 等 KDON-21000/22000型制氧机精馏系统优化与实践[J]. 冶金动力, 2023, (5): 28- 31
QIU Fengjun, XU Bo, TIAN Xiande, et al Optimization and practice of distillation system for KDON-21 000/22 000 oxygen generator[J]. Metallurgical Power, 2023, (5): 28- 31
[5]   李朋冲 深冷空分制氮工艺的设计[J]. 聚氯乙烯, 2023, 51 (6): 9- 11
LI Pengchong Process design of cryogenic air separation for nitrogen preparation[J]. Polyvinyl Chloride, 2023, 51 (6): 9- 11
doi: 10.3969/j.issn.1009-7937.2023.06.005
[6]   王恒, 庞文彬, 刘志明, 等 某油田深冷空分制氮工艺比选及优化研究[J]. 现代化工, 2023, 43 (Suppl.1): 250- 257
WANG Heng, PANG Wenbin, LIU Zhiming, et al Comparison and optimization of nitrogen production process by cryogenic air separation in an oilfield[J]. Modern Chemical Industry, 2023, 43 (Suppl.1): 250- 257
[7]   POTAPOV G G, BOYARSKII M Y, LADOKHIN S D Experimental characteristics of the external mixture cycle of a nitrogen liquefier[J]. Chemical and Petroleum Engineering, 1995, (3): 321- 324
[8]   PIOTROWSKA-HAJUNS A, CHOROWSKI M Performance analysis of small capacity liquid nitrogen generator based on Joule-Thomson refrigerator coupled with air separation membrane[J]. AIP Conference Proceedings, 2012, 1434 (1): 698- 705
[9]   LITTLE W A. Design and operation of an office liquid nitrogen generator [C]// CryoPrague . Prague: International Institute of Refrigeration, 2006: 027.
[10]   WANG H C, GUO H, ZHAO Y X, et al Development and performance test of a miniature movable mixed-refrigerant liquid nitrogen generator[J]. Cryogenics, 2018, 96: 1- 9
doi: 10.1016/j.cryogenics.2018.09.013
[11]   郭浩, 公茂琼 小型混合工质氮气液化器[J]. 真空与低温, 2020, 26 (3): 234- 240
GUO Hao, GONG Maoqiong Miniature Nitrogen liquefiers based on low-temperature mixture refrigeration[J]. Vacuum and Cryogenics, 2020, 26 (3): 234- 240
doi: 10.3969/j.issn.1006-7086.2020.03.010
[12]   黄朝坚 利用制氧机废氮进回热式制冷机生产液氮[J]. 深冷技术, 2001, (1): 36
HUANG Zhaojian Production of liquid nitrogen by passing waste nitrogen produced by an oxygen plant into a Stirling cycle refrigerator[J]. Cryogenic Technology, 2001, (1): 36
doi: 10.3969/j.issn.978-7-807.2001.01.012
[13]   蒋彦龙, 陈国邦, THUMMES Guenter, 等 脉管制冷氮液化器性能实验研究[J]. 低温工程, 2003, (2): 25- 30
JIANG Yanlong, CHEN Guobang, THUMMES G, et al Pulse tube nitrogen liquefier[J]. Cryogenics, 2003, (2): 25- 30
doi: 10.3969/j.issn.1000-6516.2003.02.005
[14]   CAUGHLEY A, EMERY N, NATION M, et al Commercial pulse tube cryocoolers producing 330 W and 1000 W at 77 K for liquefaction[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (3): 1- 4
[15]   林诗燕. 基于大冷量斯特林制冷机的气体液化系统流程设计和初步实验研究[D]. 杭州: 浙江大学, 2022.
LIN Shiyan. Process design and experimental study of gas liquefaction system based on Stirling cryocooler with large cooling capacity [D]. Hangzhou: Zhejiang University, 2022.
[16]   Cryogenic Nitrogen Plant-CNP 120 [EB/OL]. [2023-06-05]. http://www.imtekcryogenics.com.
[17]   StirLIN-1 liquid nitrogen generator [EB/OL]. [2023-06-05]. http://www.stirlingcryogenics.eu.
[18]   LN130B-AC liquid nitrogen generator [EB/OL]. [2023-06-05]. http://noblegencryogenics.com.
[19]   LNP120 liquid nitrogen plant [EB/OL]. [2023-06-05]. http://www.cryomech.com.
[20]   王颖丹 制氮工艺流程的优化及效果评测[J]. 山西化工, 2023, 43 (8): 95- 97
WANG Yingdan Optimization and effectiveness evaluation of nitrogen production process flow[J]. Shanxi Chemical Industry, 2023, 43 (8): 95- 97
[21]   胡忠宽. 浅谈化工生产中空分制氮的方法[EB/OL]. [2023-11-01]. https://xueshu.baidu.com/usercenter/paper/show?paperid=1e210gt02h0w06t0gv7f0830w0241946&site=xueshu_se.
[22]   CHOUDHURY B K, SAHOO R K, SARANGI S K Design and construction of nitrogen liquefier[J]. International Journal of Advanced Culture Technology, 2015, 3 (2): 42- 49
doi: 10.17703/IJACT.2015.3.2.42
[23]   浙江紫明科技有限公司. 一种小型单塔精馏制氮系统: CN201921471180.6 [P]. 2020-05-19.
[24]   安娜. 热泵精馏系统仿真及其热力学研究[D]. 兰州: 兰州理工大学, 2023.
AN Na. Simulation and thermodynamic study of heat pump distillation system [D]. Lanzhou: Lanzhou University of Technology, 2023.
[25]   郝楠. 混合制冷剂扩散吸收制冷系统气泡泵的理论与实验研究[D]. 杭州: 浙江大学, 2013.
HAO Nan. Experimental and theoretical studies on a bubble pump used for the mixed refrigerant diffusion-absorption refrigeration system [D]. Hangzhou: Zhejiang University, 2013.
[1] Yun QI,Da-ming SUN,Shi-yue SU,Xin QIAO. Design and numerical analysis of a cooling system for low temperature superconducting magnet of magnetic resonance imaging[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 965-971.
[2] NIE Xiang-hong, YU Xiao-li, CHEN Ping-lu, FANG Yi-dong. Theoretical analysis of available energy and efficiency in liquid
nitrogen engine cycle
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2159-2163.