Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2192-2198    DOI: 10.3785/j.issn.1008-973X.2024.10.023
    
5-6 GHz RF receiver front-end with 1.6 dB minimum noise figure and high out-of-band suppression
Haipeng FU(),Zhiqiang CHENG
School of Microelectronics, Tianjin University, Tianjin 300072, China
Download: HTML     PDF(1206KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To meet the requirements for high linearity and out-of-band signal suppression in the RF communication front-end receiver, an RF receiver front-end operated at 5-6 GHz based on 130 nm SoI technology was proposed. The RF receiver front-end consisted of a low-noise amplifier (LNA) with bypass and out-of-band suppression, an RF switch, and a bandgap reference bias circuit. For a cascode-based LNA, an LC notch filter was used for input matching to achieve out-of-band suppression. In the bias circuit, a bandgap reference current source was used for temperature compensation for the bias of the LNA, thereby shielding the effect of the power supply ripple. The RF receiver front-end was processed and tested. Results showed that within the operating frequency band of 5–6 GHz, the gain of the receiver chip was 13.4?14.0 dB, input and output reflection coefficients were below ?10 dB, the minimum noise figure was 1.6 dB, the input 1 dB compression point was greater than ?4 dBm, and the input third-order intercept point was greater than +7 dBm. The amplifier was unconditionally stable across the entire frequency band. The DC power consumption was 30 mW at 2 V supply voltage, and the chip area was 0.56 mm2.



Key wordslow noise amplifier (LNA)      out-of-band suppression      SoI technology      RF receiver front-end      active biasing     
Received: 12 August 2023      Published: 27 September 2024
CLC:  TN 7  
Fund:  国家自然科学基金资助项目(62074110);国家重点研发计划资助项目(2018YFB2202500).
Cite this article:

Haipeng FU,Zhiqiang CHENG. 5-6 GHz RF receiver front-end with 1.6 dB minimum noise figure and high out-of-band suppression. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2192-2198.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.023     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2192


噪声系数最小1.6 dB有高带外抑制的5~6 GHz射频接收前端芯片

为了满足射频通信前端接收部分对高线性与带外信号抑制能力的要求,基于130 nm 绝缘体上硅工艺设计并实现工作在5~6 GHz的射频接收前端芯片. 该前端芯片由带有旁路和带外抑制功能的低噪声放大器(LNA)、射频开关和带隙基准偏置电路等组成. 基于共源共栅结构的LNA,在输入匹配中使用LC陷波实现带外抑制;在偏置电路中,使用带隙基准电流源对LNA的偏置进行温度补偿,屏蔽电源纹波影响. 对该前端芯片进行流片加工并测试,结果表明,当工作频率为5~6 GHz时,芯片的接收增益为13.4~14.0 dB,输入与输出反射系数均小于?10 dB,频带内的最小噪声系数为1.6 dB,在工作频率内1 dB压缩点的输入功率大于?4 dBm,输入三阶交调点大于+7 dBm. 低噪声放大器在整个工作频段内无条件稳定,在2 V供电电压下电路的直流功耗为30 mW,芯片面积为0.56 mm2.


关键词: 低噪声放大器(LNA),  带外抑制,  绝缘体上硅工艺,  射频接收前端,  有源偏置 
Fig.1 Overall block diagram of RF receiver front-end
Fig.2 RF switch topology
Fig.3 LNA topology and input matching small signal model
Fig.4 Schematic of low noise amplifier
Fig.5 Bandgap reference circuit
Fig.6 Comparison of bias voltage with and without temperature compensation
Fig.7 Microscopic photo of chip
Fig.8 Scattering parameter simulation and test results of low noise amplifier
Fig.9 Simulation and test results of noise figure
Fig.10 Simulation and test results of 1 dB compression point and input third-order intercept point
Fig.11 Scattering parameter simulation and test results of bypass
Fig.12 Scattering parameter simulation and test results of switch’s PA path
Fig.13 Test results of 1 dB compression point for switch’s PA path
工艺f /GHzGainmax/dBNFmin/dBIP1dB/dBmIIP3/dBmP/mWA/mm2FoM/GHz
180 nm CMOS[21]0.1~2.017.52.9?3.0010.621.30.631.39
180 nm SoI[22]1.010.71.33.0022.050.00.671.34
GaAs pHEMT[23]5.0~6.027.01.3?13.00240.04.291.64
130 nm CMOS[24]5.025.51.9?25.07020.91.260.48
130 nm SoI(本研究)5.0~6.014.01.6?4.007.030.00.564.11
Tab.1 Performance comparison of different low noise amplifiers
[1]   SHIRMOHAMMADI B, YAVARI M A linear wideband CMOS balun-LNA with balanced loads[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (3): 754- 758
[2]   PANG D, GUI Y, WU S, et al. An ultra-wideband low noise amplifier design in 0.13-um CMOS technology [C]// 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications . Zhuhai: IEEE, 2021: 43–44.
[3]   MUSTAPHA A A, GAYA S, MOHAMMAD B, et al. Wideband low noise amplifiers for mm-wave 5G application using capacitive feedback technique in 22nm FDSOI [C]// 2021 28th IEEE International Conference on Electronics, Circuits, and Systems . Dubai: IEEE, 2021.
[4]   BOZORG A, STASZEWSKI R B A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse[J]. IEEE Journal of Solid-State Circuits, 2021, 56 (2): 404- 415
doi: 10.1109/JSSC.2020.3018680
[5]   胡锦, 翟媛, 郝明丽, 等 应用于WLAN的SiGe射频功率放大器的设计[J]. 湖南大学学报: 自然科学版, 2012, 39 (10): 56- 59
HU Jin, ZHAI Yuan, HAO Mingli, et al Design of SiGe RF power amplifier for WLAN[J]. Journal of Hunan University: Natural Sciences, 2012, 39 (10): 56- 59
[6]   LI C, WANG X, JAIN V, et al. 2.4/5.5GHz LNA switch designs based on high resistive substrate 0.35 μm SiGe BiCMOS [C]// 2015 IEEE 11th International Conference on ASIC . Chengdu: IEEE, 2015: 1–4.
[7]   ZOU T, XU H, WANG Y, et al. A capacitor assisting triple-winding transformer low-noise amplifier with 0.8-1.5dB NF 6-12GHz BW ±0.75dB Ripple in 130nm SOI CMOS [C]// 2022 IEEE Radio Frequency Integrated Circuits Symposium . Denver: IEEE, 2022: 231–234.
[8]   PARAT D, SERHAN A, REYNIER P, et al. A linear high-power reconfigurable SOI-CMOS front-end module for WI-FI 6/6E applications [C]// 2022 IEEE Radio Frequency Integrated Circuits Symposium . Denver: IEEE, 2022: 39–42.
[9]   NYSSENS L, RACK M, WANE S, et al. A 2.5-2.6 dB noise figure LNA for 39 GHz band in 22 nm FD-SOI with back-gate bias tunability [C]// 2022 17th European Microwave Integrated Circuits Conference . Milan: IEEE, 2022: 60–63.
[10]   GAO H, SHI J, LIN F. A wideband LNA with gm-boosted and noise cancel technique [C]// 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications . Nanjing: IEEE, 2020: 17–18.
[11]   SHAMS N, KAKHKI A P, NABKI F. Reconfigurable IR-UWB current mode switched receiver for IoT applications [C]// 2019 26th IEEE International Conference on Electronics, Circuits and Systems . Genoa: IEEE, 2019: 9–12.
[12]   曾志, 李远鹏, 陈长友 具有带外抑制特性的Ka波段低功耗低噪声放大器[J]. 半导体技术, 2021, 46 (1): 36- 40
ZENG Zhi, LI Yuanpeng, CHEN Changyou Ka-band low power consumption and low noise amplifier with out-of-band suppression characteristic[J]. Semiconductor Technology, 2021, 46 (1): 36- 40
[13]   ZHANG J, ZHAO D, YOU X Analysis and design of a CMOS LNA with transformer-based integrated notch filter for Ku-band satellite communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70 (1): 790- 800
doi: 10.1109/TMTT.2021.3126858
[14]   LEE D, KWON K CMOS channel-selection LNA with a feedforward N-path filter and calibrated blocker cancellation path for FEM-less cellular transceivers[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70 (3): 1810- 1820
doi: 10.1109/TMTT.2022.3142140
[15]   余巨臣, 彭龙新, 刘昊, 等 具有带外抑制的限幅低噪声放大器一体化设计[J]. 半导体技术, 2022, 47 (6): 493- 497
YU Juchen, PENG Longxin, LIU Hao, et al Integrated design of limiter low noise amplifier with out-of-band rejection[J]. Semiconductor Technology, 2022, 47 (6): 493- 497
[16]   MALEK M I, SAINI S. Improved two stage ultra-wideband CMOS low noise amplifier with out band rejection using low noise active inductor [C]// 2015 International Conference on Signal Processing and Communication Engineering Systems . Guntur: IEEE, 2015: 157–161.
[17]   LI Y, LI X, HUANG Z, et al A novel low-power notch-enhanced active filter for ultrawideband interferer rejected LNA[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69 (3): 1684- 1697
doi: 10.1109/TMTT.2021.3053264
[18]   KWON K, KIM S, SON K Y A hybrid transformer-based CMOS duplexer with a single-ended notch-filtered LNA for highly integrated tunable RF front-ends[J]. IEEE Microwave and Wireless Components Letters, 2018, 28 (11): 1032- 1034
doi: 10.1109/LMWC.2018.2869302
[19]   池保勇, 余志平, 石秉学, 等. CMOS射频集成电路分析与设计[M]. 北京: 清华大学出版社, 2006: 157–211.
[20]   NGUYEN T K, OH N J, CHOI H C, et al. CMOS low noise amplifier design optimization technique [C]// The 2004 47th Midwest Symposium on Circuits and Systems . Hiroshima: IEEE, 2004.
[21]   KIM B K, IM D, CHOI J, et al A highly linear 1 GHz 1.3 dB NF CMOS low-noise amplifier with complementary transconductance linearization[J]. IEEE Journal of Solid-State Circuits, 2014, 49 (6): 1286- 1302
doi: 10.1109/JSSC.2014.2319262
[22]   GUO B, CHEN J, LI L, et al A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations[J]. IEEE Journal of Solid-State Circuits, 2017, 52 (5): 1331- 1344
doi: 10.1109/JSSC.2017.2657598
[23]   倪冬欣, 彭龙新, 李建平, 等 5~6 GHz限幅低噪声放大器的研制[J]. 固体电子学研究与进展, 2020, 40 (1): 18- 22
NI Dongxin, PENG Longxin, LI Jianping, et al Development of a 5~6 GHz limiter low noise amplifier[J]. Research and Progress of SSE, 2020, 40 (1): 18- 22
[1] XU Shi-yi, WANG Chao-er, HUANG Jian-hua, MO Jiong-jiong, WANG Zhi-yu, CHEN Hua, YU Fa-xin. Design of broadband LNA with active biasing using negative feedback technique[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1081-1087.
[2] TONG Hua-qing, XU Shi-yi, HUANG Jian-hua, MO Jiong-jiong, WANG Zhi-yu,YU Fa-xin. Low noise amplifier module with active bias using system in package technology[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 834-840.