Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2084-2095    DOI: 10.3785/j.issn.1008-973X.2024.10.012
    
Dominant innovation framework driven by multi-source of data
Qinglin SHI1,2(),Kairui ZHANG1,2,Liang HOU1,3,Xiaoxuan GUO1,2,Wenbo ZHANG1,3,Xiaozhen LIAN1,3,Yongchao CHEN4,Rui MU1,2,*()
1. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China
2. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
3. Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
4. Xiamen Intretech Incorporated, Xiamen 361027, China
Download: HTML     PDF(1626KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new dominant innovation framework was proposed to address the shortcomings of the design knowledge and single-source data-driven traditional requirement mining methods, such as over-reliance on design experience, incomplete requirement mining, and lack of requirement forecasting. The unstructured text data was used as the object to extract and classify the features of requirement from the users’ perspective. The operational big data of product was used as the object to mine the users’ requirement from the product’s perspective. The requirement prediction theory was applied to predict the implicit requirement of future products and construct a data-driven dominant innovation matrix. Compared with the traditional knowledge-driven market research and the single-source data requirement mining methods, the proposed framework was more objective and comprehensive for explicit requirement mining, while taking into account the future implicit requirement mining. The mini-printer of an intelligent manufacturing enterprise was used as a case to verify the effectiveness of the proposed framework.



Key wordsmulti-source of data      dominant innovation      online review      operational big data      innovation matrix      requirement forecasting     
Received: 23 August 2023      Published: 27 September 2024
CLC:  TH 122  
  TB 472  
Fund:  科技部创新方法专项基金资助项目(2020IM010100);厦门市自然科学基金资助项目(3502Z20227186);福建省科技计划创新战略研究项目(2022R0006).
Corresponding Authors: Rui MU     E-mail: 1927607116@qq.com;murui@xmu.edu.cn
Cite this article:

Qinglin SHI,Kairui ZHANG,Liang HOU,Xiaoxuan GUO,Wenbo ZHANG,Xiaozhen LIAN,Yongchao CHEN,Rui MU. Dominant innovation framework driven by multi-source of data. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2084-2095.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2084


多源数据驱动的主控式创新框架

为了解决设计知识和单源数据驱动的传统需求挖掘方法过于依赖设计经验、需求挖掘不全面、缺乏需求预测等问题,提出新的主控式创新框架. 以非结构化文本数据为对象,从用户角度对需求进行特征提取及分类;以产品运行大数据为对象,从产品角度挖掘用户需求;运用需求预测理论对未来产品隐性需求进行预测,构建数据驱动的主控式创新矩阵. 相较于知识驱动为主的传统市场调研和单源数据的需求挖掘方法,所提框架显性需求挖掘更为客观全面,兼顾未来隐性需求挖掘. 以某智能制造企业的迷你打印机为案例,验证了所提框架的有效性.


关键词: 多源数据,  主控式创新,  在线评论,  运行大数据,  创新矩阵,  需求预测 
Fig.1 Dominant innovation framework driven by multi-source of data
Fig.2 Lexicon-based sentiment analysis method
Fig.3 Operational performance distribution and performance requirement interval
Fig.4 Process of performance satisfaction analysis based on operational data
Fig.5 Process of transition matrix generation based on review data
Fig.6 Process of transition matrix generation based on operational data
Fig.7 Technology maturity prediction model
Fig.8 Methods of implicit requirement forecasting
特征集群Sfc特征集群Sfc特征集群Sfc
体积大小1. 125产品品牌0. 900产品重量0. 750
型号款式1. 000用户操作0. 859运行声音0. 750
产品价格0. 938配套软件0. 857开关按键0. 750
产品运行0. 929产品形状0. 815打印效果0. 602
产品颜色0. 927产品用途0. 771打 印 纸0. 583
Tab.1 Satisfaction of GO feature cluster
Fig.9 Distribution of operational data
性能指标$p_i$$S(p_i)$${\mathrm{Pv}}_r$
清 晰 度437.840.44481.00
打印速度6.89650.97170.00
马达温度41.30.82830.15
噪 声68.00.65660.41
Tab.2 Satisfaction of GO performance
Fig.10 Result of mini printer market research in 2022
特征集群CrvrMvr特征集群CrvrMvr
体积大小0.0000.083产品形状0.4110.032
型号款式0.1130.187产品用途0.4950.075
产品价格0.2150.055产品重量0.5390.083
产品运行0.2280.450运行声音0.5390.439
产品颜色0.2300.032开关按键0.5390.000
产品品牌0.2690.000打印效果0.9351. 000
用户操作0.3340.407打 印 纸1. 0000.859
配套软件0.3370.296
Tab.3 Requirement value and market value of feature clusters
Fig.11 Transition matrix based on review data
模块impj${\widetilde {\mathrm{imp}}}_j $
充电管理模块0.0150.039
主控芯片0.2620.703
蓄电池0.0370.099
通信模块0.0240.063
马达驱动模块0.1580.425
按键按钮0.0000.000
热敏机芯0.3731.000
Tab.4 Importance of different modules of GO
Fig.12 Transition matrix based on operational data
Fig.13 Trend of number of patent disclosures for thermal printers
技术进化定律隐性需求预测
提高理想化水平自动裁剪,自动装订,无损害打印头,声音提示
动态化增长学习分析系统,可选装模块实现定制化
缩短能量流路径长度太阳能充电
增加可控性实时动态监测,防水抗摔,恒温打印头,语音指令识别
增加和谐性便携3D打印机,无声打印机
Tab.5 Results of implicit requirement forecasting
Fig.14 Dominant innovation matrix of GO series
用户群体使用场景描述需 求
学生群体学生群体使用迷你打印机进行学习和错题打印自动裁剪、自动装订、无损打印头、学习分析系统、恒温打印头、无声打印机,低噪声、高质量打印纸、优质打印效果,小体积、款式新颖、高速打印······
居家老人老人使用智能产品不便,子女通过打印机远程提醒老人到点吃药和交流无损打印头、声音提示、恒温打印头、语音指令识别,优质打印效果,APP顺畅、操作简单、运行流畅······
情侣/户外摄影情侣需要远程打印传递消息以及户外拍照打印,户外摄影爱好者可以随时打印照片自动裁剪、太阳能充电、防水抗摔、语音指令识别,优质打印效果,小体积、小重量、款式新颖、连续打印······
特定人群有户外3D打印需求的群体或其他功能需求的群体可选装模块实现定制化、便携3D打印
Tab.6 Requirement market segmentation of mini printer
产品说明产品型号体积/mm3款式数量Lp/dBvp/(cm2·s?1)打印纸DPI连接方式评论数量
目标产品GO80×79×334686.8965不干胶203无线513
同期竞品QL-800125×213×1421717.3043不干胶300有线219
下一代产品G486×79×394626.3809不干胶
单色/粘贴式
300无线1654
下一代竞品QL-820NWB125×213×1422707.4085不干胶300有线/无线123
Tab.7 Performance comparison of different products
Fig.15 Results of different data-driven requirement mining
[1]   GUO Q, XUE C, YU M, et al A new user implicit requirements process method oriented to product design[J]. Journal of Computing and Information Science in Engineering, 2019, 19 (1): 011010
doi: 10.1115/1.4041418
[2]   IMBESI S, SCATAGLINI S A user centered methodology for the design of smart apparel for older users[J]. Sensors, 2021, 21 (8): 2804
doi: 10.3390/s21082804
[3]   王超, 谷美利, 龙若佳, 等 基于乘客行为分析的列车卧铺布局创新设计研究[J]. 包装工程, 2023, 44 (18): 27- 34
WANG Chao, GU Meili, LONG Ruojia et al. Innovative design of sleeper layout based on passenger behavior analysis[J]. Packaging Engineering, 2023, 44 (18): 27- 34
[4]   YANG X, ZHANG J, WANG Y, et al. Construction of a product design model based on multi-scenario FBS-QFD [C]// International Conference on Mechanical Design and Simulation . [S. l.]: SPIE, 2022.
[5]   耿秀丽, 潘亚虹 考虑用户体验的产品服务系统模块重要度判定方法[J]. 计算机集成制系统, 2020, 26 (5): 1295- 1303
GENG Xiuli, PAN Yahong Importance degree determination approach for product service system modules based on user experience[J]. Computer Integrated Manufacturing Systems, 2020, 26 (5): 1295- 1303
[6]   苏珂, 崔元 面向相似认知用户集群的TRIZ超系统资源需求获取模型[J]. 计算机集成制造系统, 2021, 27 (7): 2065- 2077
SU Ke, CUI Yuan Demand acquisition model of TRIZ super system resources for similar cognitive user clusters[J]. Computer Integrated Manufacturing Systems, 2021, 27 (7): 2065- 2077
[7]   LEE J, ABUALI M Innovative product advanced service systems (I-PASS): methodology, tools, and applications for dominant service design[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52: 1161- 1173
doi: 10.1007/s00170-010-2763-7
[8]   王新, 乔文文 基于云平台的用户隐式需求分析方法研究[J]. 机械设计与研究, 2020, 36 (5): 8- 11
WANG Xin, QIAO Wenwen Research on user implicit demand analysis based on cloud platform[J]. Machine Design and Research, 2020, 36 (5): 8- 11
[9]   LI Y, DONG Y, WANG Y, et al. Product design opportunity identification through mining the critical minority of customer online reviews [J]. Electronic Commerce Research , 2023: 1–29.
[10]   王克勤, 刘朝明 基于在线评论的重要度绩效竞争对手分析的产品设计改进方法[J]. 计算机集成制造系统, 2022, 28 (5): 1496- 1506
WANG Keqin, LIU Chaoming Product design improvement based on importance performance competitor analysis of online reviews[J]. Computer Integrated Manufacturing Systems, 2022, 28 (5): 1496- 1506
[11]   侯亮, 林浩菁, 王少杰, 等 基于运行数据驱动反向设计的复杂装备个性化定制[J]. 机械工程学报, 2021, 57 (8): 65- 80
HOU Liang, LIN Haojing, WANG Shaojie, et al Mass personalization for complex equipment based on operating data-driven inverse design[J]. Journal of Mechanical Engineering, 2021, 57 (8): 65- 80
doi: 10.3901/JME.2021.08.065
[12]   ZHANG L, CHU X, CHEN H, et al Identification of performance requirements for design of smartphones based on analysis of the collected operating data[J]. Journal of Mechanical Design, 2017, 139 (11): 111418
doi: 10.1115/1.4037475
[13]   叶文涛, 韩宇翃 基于Kano模型和TRIZ技术进化法则的老年代步车设计[J]. 包装工程, 2023, 44 (Suppl.1): 312- 319
YE Wentao, HAN Yuhong Elderly mobility scooter design based on Kano model and evolutionary laws of TRIZ technique[J]. Packaging Engineering, 2023, 44 (Suppl.1): 312- 319
[14]   张建辉, 李勇, 张鹏, 等 需求进化和技术进化集成的产品用户需求获取研究[J]. 机械设计, 2017, 34 (7): 15- 22
ZHANG Jianhui, LI Yong, ZHANG Peng, et al Customer needs acquisition by integrating needs evolution with technology evolution[J]. Journal of Machine Design, 2017, 34 (7): 15- 22
[15]   王慧. 基于特征提取和情感分析的用户需求挖掘研究[D]. 杭州: 浙江理工大学, 2019: 40–43.
WANG Hui. Research on user demand mining based on feature extraction and emotion analysis [D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 40–43.
[16]   ZHANG L, CHU X, CHEN H, et al A data-driven approach for the optimisation of product specifications[J]. International Journal of Production Research, 2019, 57 (3): 703- 721
doi: 10.1080/00207543.2018.1480843
[17]   ZHAO Z, LI Y, CHU X Data-driven approach to identify obsolete functions of products for design improvements[J]. Journal of Intelligent and Fuzzy Systems, 2021, 40 (3): 5369- 5382
doi: 10.3233/JIFS-202144
[18]   YANG Z L, SONG Y W, DUAN Z F, et al New sigmoid-like function better than fisher z transformation[J]. Communications in Statistics-Theory and Methods, 2016, 45 (8): 2332- 2341
doi: 10.1080/03610926.2013.771750
[19]   CHOU Y M, POLANSKY A M, MASON R L Transforming non-normal data to normality in statistical process control[J]. Journal of Quality Technology, 1998, 30 (2): 133- 141
doi: 10.1080/00224065.1998.11979832
[20]   SAKIA R M The Box-Cox transformation technique: a review[J]. Journal of the Royal Statistical Society: Series D (The Statistician), 1992, 41 (2): 169- 178
[21]   邱凯, 苏建宁, 张书涛, 等 面向多域协同的复杂产品再设计模块主从识别[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2358- 2366
QIU Kai, SU Jianning, ZHANG Shutao, et al Leader-follower identification of complex product redesign modules for multi-domain collaboration[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2358- 2366
[22]   檀润华. TRIZ及应用: 技术创新过程与方法[M]. 北京: 高等教育出版社, 2010: 93.
[23]   张文焘, 张建辉, 张文旭, 等 基于多方法融合的需求提取模型研究[J]. 机械设计与研究, 2021, 37 (1): 10- 15
ZHANG Wentao, ZHANG Jianhui, ZHANG Wenxu, et al Research on requirement extraction model based on multi-method fusion[J]. Machine Design and Research, 2021, 37 (1): 10- 15
[24]   孙群. 基于TRIZ的六足仿生机器人创新设计[D]. 天津: 河北工业大学, 2018.
SUN Qun. Innovative design of hexapod robot based on TRIZ [D]. Tianjin: Hebei University of Technology, 2018.
No related articles found!