Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2053-2061    DOI: 10.3785/j.issn.1008-973X.2024.10.008
    
Weighted guided filter based on peak-aware and multi-scale constraints
Quan ZHANG(),Haizhong LIU*()
College of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(3099KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new weighted guided image filter was proposed for the problem that guided image filtering fails to preserve sharp edges and leads to excessive structural blurring in smoothed images. Peak-aware weighting was utilized to extract edge and structural information from images, and the robustness of the proposed filter was improved by multi-scale constraints. The regularization term coefficients of the filter loss function were improved to an adaptive form based on the image variance information. Application experiments were carried out in edge-aware smoothing, image detail enhancement, texture removal smoothing, and image denoising, and the results showed that the proposed filter outperformed the guided image filters involved in the comparison in terms of visualization, peak signal-to-noise ratio, and structural similarity. Compared with the peak signal-to-noise ratio and structural similarity of the suboptimal filters of the edge-aware smoothing experiments, the peak signal-to-noise ratio was 2.62 dB higher on average, and the structural similarity was 0.0286 higher on average.



Key wordsguided filter      image smoothing      peak aware      multi-scale constraint      edge preserving     
Received: 16 June 2023      Published: 27 September 2024
CLC:  TP 391  
Fund:  甘肃省优秀研究生“创新之星”项目(2023CXZX-592).
Corresponding Authors: Haizhong LIU     E-mail: 12211601@stu.lzjtu.edu.cn;liuhzh@lzjtu.edu.cn
Cite this article:

Quan ZHANG,Haizhong LIU. Weighted guided filter based on peak-aware and multi-scale constraints. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2053-2061.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.008     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2053


基于峰值感知和多尺度约束的加权引导滤波器

引导图像滤波无法保留锐利边缘,导致平滑图像出现结构过度模糊问题, 为此提出新的加权引导图像滤波器. 利用峰值感知加权提取图像的边缘和结构信息,通过多尺度约束提高所提滤波器的鲁棒性. 基于图像方差信息将滤波损失函数的正则化项系数改进为自适应式. 边缘感知平滑、图像细节增强、纹理去除平滑以及图像去噪领域的应用实验结果表明, 所提滤波器在视觉效果、峰值信噪比以及结构相似度上均优于参与对比的引导图像滤波器. 与边缘感知平滑实验中次优滤波器的峰值信噪比和结构相似度相比,所提滤波器的峰值信噪比平均高2.62 dB, 结构相似度平均高0.0286.


关键词: 引导滤波器,  图像平滑,  峰值感知,  多尺度约束,  边缘保持 
Fig.1 Comparison of model coefficient for different filters
$r$$\lambda $SSIM
模型1模型2模型3
20.010.90930.90260.9727
40.010.87830.88920.9675
80.010.85610.89890.9701
20.100.81260.76310.9518
40.100.72730.67020.9305
80.100.65260.60800.9194
21.000.73920.71020.9474
41.000.61440.58090.9201
81.000.49990.47140.9001
Tab.1 Comparison of structural similarity for different filter models
$r$$\lambda $/$ {\lambda _0} $自适应前自适应后
PSNR/dBSSIMPSNR/dBSSIM
20.0137.670.972739.100.9763
40.0136.680.967538.340.9727
80.0136.290.970138.180.9754
20.1034.380.951835.120.9559
40.1032.150.930533.140.9382
80.1030.350.919431.730.9320
21.0033.850.947433.990.9482
41.0031.310.920131.540.9220
81.0029.070.900129.460.9045
Tab.2 Comparison of model performance before and after regularization term coefficient adaptation
Fig.2 Original of edge-aware smoothing experiment
Fig.3 Visual comparison of image smoothing results for different filter models
$\lambda $模型PSNR/dBSSIM
$r = 2$$r = 4$$r = 8$$r = 2$$r = 4$$r = 8$
0.12GIF30.9830.1729.710.90410.89780.9076
WGIF31.2930.4229.920.90630.89960.9092
GGIF36.0334.9934.570.94950.94340.9485
SWGIF37.3234.4732.430.98300.96410.9473
SKWGIF32.2431.2230.790.91990.90470.9135
本研究39.1038.3438.180.97630.97540.9627
0.22GIF26.8525.2623.900.81050.76490.7506
WGIF27.2625.5924.140.81740.77210.7571
GGIF34.1432.0530.470.92910.90710.8111
SWGIF34.3830.3127.440.97310.92700.8758
SKWGIF28.4626.5525.110.85180.79090.7718
本研究36.2334.6433.680.96280.95110.9502
0.42GIF24.5322.5320.670.73680.64740.5860
WGIF24.9122.8120.840.74510.65600.5934
GGIF33.5130.8028.390.92080.88710.8663
SWGIF32.9628.0224.580.96770.89610.8011
SKWGIF26.2823.8321.780.79990.69210.6210
本研究34.7332.6031.010.95330.93300.9239
Tab.3 Comparison of image smoothing results for different filter models
Fig.4 Pixel intensity distribution of 180th horizontal profile for input image and six model filtered outputs
Fig.5 Visual comparison of image detail enhancement effect for different filter models
Fig.6 Visual comparison of texture removal effect for different filter models
Fig.7 Image for denoising test
模型PSNR/dBSSIMTS/s
GIF27.140.71500.006
WGIF28.510.74610.006
GGIF32.520.86830.009
SWGIF28.260.75300.048
SKWGIF27.350.689722.795
本研究34.710.92440.010
Tab.4 Comparison of image denoising results for different filter models
Fig.8 Image for denoising visualization experiment
Fig.9 Visual comparison of image denoising results for different filter models
[20]   MAGNIER B, MONTESINOS P, DIEP D. Texture removal by pixel classification using a rotating filter [C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing . Prague: IEEE, 2011: 1097–1100.
[21]   HE K, SUN J, TANG X Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397- 1409
doi: 10.1109/TPAMI.2012.213
[22]   LI Z, ZHENG J, ZHU Z, et al Weighted guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24 (1): 120- 129
doi: 10.1109/TIP.2014.2371234
[23]   KOU F, CHEN W, WEN C, et al Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing, 2015, 24 (11): 4528- 4539
doi: 10.1109/TIP.2015.2468183
[24]   YIN H, GONG Y, QIU G Side window guided filtering[J]. Signal Processing, 2019, 165: 315- 330
doi: 10.1016/j.sigpro.2019.07.026
[25]   SUN Z, HAN B, LI J, et al Weighted guided image filtering with steering kernel[J]. IEEE Transactions on Image Processing, 2020, 29: 500- 508
doi: 10.1109/TIP.2019.2928631
[26]   DENG G, GALETTO F, Al-NASRAWI M, et al A guided edge-aware smoothing-sharpening filter based on patch interpolation model and generalized gamma distribution[J]. IEEE Open Journal of Signal Processing, 2021, 2: 119- 135
doi: 10.1109/OJSP.2021.3063076
[27]   LIU D, HE C Peak-aware guided filtering for spectrum signal denoising[J]. Chemometrics and Intelligent Laboratory Systems, 2022, 222: 104508
doi: 10.1016/j.chemolab.2022.104508
[28]   LI Y, LI Z, ZENG C, et al Adaptive weighted guided image filtering for depth enhancement in shape-from-focus[J]. Pattern Recognition, 2022, 131: 108900
doi: 10.1016/j.patcog.2022.108900
[29]   XU H, ZHANG Z, YIN G, et al Adaptive bilateral texture filter for image smoothing[J]. Frontiers in Neurorobotics, 2022, 16: 729924
doi: 10.3389/fnbot.2022.729924
[1]   XU L, YAN Q, XIA Y, et al Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31 (6): 1- 10
[2]   CHEN Y, LI J, ZHOU Y Hyperspectral image denoising by total variation-regularized bilinear factorization[J]. Signal Processing, 2020, 174: 107645
doi: 10.1016/j.sigpro.2020.107645
[30]   ZHANG Q, SHEN X, XU L, et al. Rolling guidance filter [C]// European Conference on Computer Vision . [S.l.]: Springer, 2014: 815–830.
[3]   GHOSH S, CHAUDHURY K N On fast bilateral filtering using fourier kernels[J]. IEEE Signal Processing Letters, 2016, 23 (5): 570- 573
doi: 10.1109/LSP.2016.2539982
[4]   SONG C, XIAO C, LI X, et al Structure-preserving texture filtering for adaptive image smoothing[J]. Journal of Visual Languages and Computing, 2018, 45: 17- 23
doi: 10.1016/j.jvlc.2018.02.002
[5]   FARBMAN Z, FATTAL R, LISCHINSKI D, et al Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Transactions on Graphics, 2008, 27 (3): 1- 10
[6]   JIANG W, YANG X, WU W, et al Medical images fusion by using weighted least squares filter and sparse representation[J]. Computers and Electrical Engineering, 2018, 67: 252- 266
doi: 10.1016/j.compeleceng.2018.03.037
[7]   NAGAMANI K, DIVYA K, SUJATHA K, et al Adaptive histogram equalization of wavelet sub bands for the enhancement of contrast in aerial images[J]. Materials Today: Proceedings, 2018, 52: 898- 901
[8]   LIU Y P, ZHANG F, ZHANG Y, et al Image smoothing based on histogram equalized content-aware patches and direction-constrained sparse gradients[J]. Signal Processing, 2021, 183: 108037
doi: 10.1016/j.sigpro.2021.108037
[9]   YIN H, GONG Y, QIU G, et al Fast and efficient implementation of image filtering using a side window convolutional neural network[J]. Signal Processing, 2020, 176: 107717
doi: 10.1016/j.sigpro.2020.107717
[10]   GONG Y, TANG W, ZHOU L, et al. Quarter laplacian filter for edge aware image processing [C]// 2021 IEEE International Conference on Image Processing . Anchorage: IEEE, 2021: 1959–1963.
[11]   VDABO K, FOI A, KATKOVNIK V, et al Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16 (8): 2080- 2095
doi: 10.1109/TIP.2007.901238
[12]   ZHANG X, HE C, Robust double-weighted guided image filtering [J]. Signal Processing , 2022, 199: 108609.
[13]   LIU W, ZHANG P, HUANG X, et al Real-time image smoothing via iterative least squares[J]. ACM Transactions on Graphics, 2020, 39 (3): 1- 24
[14]   SUN G, LIU S, WANG W, et al Dynamic range compression and detail enhancement algorithm for infrared image[J]. Applied Optics, 2014, 53 (26): 6013- 6029
doi: 10.1364/AO.53.006013
[15]   LI Z, ZHENG J Visual-salience-based tone mapping for high dynamic range images[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (12): 7076- 7082
doi: 10.1109/TIE.2014.2314066
[16]   LEE W U, PARK S, KO S J. Image fusion-based tone mapping using gaussian mixture model clustering [C]// 2020 IEEE International Conference on Consumer Electronics . Las Vegas: IEEE, 2020: 1–4.
[17]   LI H, CHAN T N, QI X, et al Detail-preserving multi-exposure fusion with edge-preserving structural patch decomposition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31 (11): 4293- 4304
doi: 10.1109/TCSVT.2021.3053405
[18]   LI Z, ZHENG J, RAHARDJA S Detail-enhanced exposure fusion[J]. IEEE Transactions on Image Processing, 2012, 21 (11): 4672- 4676
doi: 10.1109/TIP.2012.2207396
[1] QIN Hong-chao, LI Yan-yan, LONG Wei, ZHAO Rui-peng. Real-time video dehazing using guided filtering and transmissivity estimated based on dark channel prior theory[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1302-1309.
[2] WANG Zhi, ZHU Shi qiang, BU Yan, GUO Zhen min. Stereo matching algorithm using improved guided filtering[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2262-2269.
[3] CHEN Kuo, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Fast detail-preserving exposure fusion[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1048-1054.