Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (5): 1050-1059    DOI: 10.3785/j.issn.1008-973X.2024.05.018
    
Numerical simulation of mooring performance of waterjet propulsion system
Ruofan FENG1,2(),Tianxiong LIANG1,Ning LIANG1,Linlin CAO1,2,*(),Dazhuan WU1,2
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Jiaxing 314031, China
Download: HTML     PDF(5053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A calculation method based on volume of fluid (VOF) was adopted based on mooring tests to numerically simulate the flow field characteristics of waterjet propulsion under mooring conditions in order to analyze the internal flow characteristics of waterjet propulsion under mooring conditions. The comparison with the mooring test data showed that the total thrust and torque obtained based on this method agreed well with the test data. The method can effectively simulate the free jet flow field of the waterjet propulsion. The numerical simulation results of waterjet propulsion show that the growth rate of the Euler’s head inside the impeller tends to be constant as the impeller speed increases, and the efficiency of the impeller increases. The areas with high entropy increase inside the impeller are mainly distributed near the impeller inlet, wall surface and blade tip, where the flow loss is large, which is closely related to the significant flow separation at waterjet duct under mooring conditions.



Key wordswaterjet propulsion      mooring test      volume of fluid      internal flow     
Received: 11 May 2023      Published: 26 April 2024
CLC:  U 644  
Fund:  国家自然科学基金资助项目(52171326).
Corresponding Authors: Linlin CAO     E-mail: 22227168@zju.edu.cn;caolinlin@zju.edu.cn
Cite this article:

Ruofan FENG,Tianxiong LIANG,Ning LIANG,Linlin CAO,Dazhuan WU. Numerical simulation of mooring performance of waterjet propulsion system. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1050-1059.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.05.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I5/1050


喷水推进器系泊工况性能的数值模拟

为了分析系泊工况下喷水推进器的内流特性,在系泊试验的基础上采用基于流体体积法(VOF)的计算方法,对喷水推进器的系泊工况内流场特性进行数值模拟研究. 对比系泊试验数据发现,基于该方法得到的推进器总推力和转矩与试验数据吻合较好,该方法可以较好地模拟喷水推进器自由喷射流场. 从喷水推进器数值模拟结果可知,当叶轮转速增加时,叶轮内部欧拉扬程的增长速度趋于恒定,叶轮的效率增加;叶轮内部熵增较高的区域主要分布在叶轮入口、壁面和叶顶附近,表示该区域流动损失较大,与系泊工况下喷水推进器的进口流道处存在较大程度的流动分离密切相关.


关键词: 喷水推进,  系泊试验,  流体体积法,  内部流动 
Fig.1 Structure of waterjet propulsion
参数设计值参数设计值
${n_{\mathrm{r}}}$/(r·min?12 500$D$/mm349
${q_{{m}}}$/(kg·s?11112.5${C_{\mathrm{r}}}$3
${H_{\mathrm{r}}}$/m23.7${C_{\mathrm{s}}}$10
Tab.1 Parameters of waterjet propulsion
Fig.2 Structure of mooring test rig for waterjet propulsion
Fig.3 Construction of mooring test rig for waterjet propulsion
Fig.4 Computational domains and boundary conditions of numerical simulation
区域网格单元数
进口流道1 292 914
叶轮2 095 674
导叶1 402 700
喷口附近外流场2 080 789
远离喷口外流场2 678 444
总网格单元数9 550 521
Tab.2 Number of grid cells in each part of computational domains
Fig.5 Grids of various parts of computational domains
网格编号N网格编号N
111 507 09237 930 255
29 550 52146 593 938
Tab.3 Number of four sets of grids with different densities
Fig.6 Grid independence analysis
网格${R_{\mathrm{G}}}$${U_{{\text{SN}}}}$/%${U_{\text{V}}}$/%
1,2,3?0.0890.2366.005
2,3,4?0.3560.6646.037
Tab.4 Results of uncertainty analysis of torque
Fig.7 Comparison between calculated and experimental results of waterjet pump performance parameters
Fig.8 Jet flow field at different pump speeds under forward conditions
Fig.9 Relationship between jet length and head
Fig.10 Relationship between head and pump speed
Fig.11 Leading and trailing edge surfaces of impeller
Fig.12 Overall Euler’s head distribution of impeller under different flow rates
Fig.13 Normalized overall Euler’s head distribution of impeller under different flow rates
Fig.14 Slope distribution of normalized overall Euler’s head curve
Fig.15 Variation of impeller efficiency with pump speed
Fig.16 Relationship between efficiency and pump speed
Fig.17 Entropy generation rate of impeller region
Fig.18 Percentage of entropy generation rate in different regions
Fig.19 Entropy generation rate of impeller region at speed of 1 485 r/min (span = 0.05、0.50、0.95)
Fig.20 Entropy generation rate and velocity distribution of impeller (span = 0.5)
Fig.21 Entropy generation rate distribution of waterjet duct (1 485 r/min)
Fig.22 Velocity distribution of waterjet duct (1 485 r/min)
Fig.23 Vortex distribution of waterjet duct
Fig.24 Velocity distribution at each section before impeller inlet (1 485 r/min)
Fig.25 Velocity vector diagram of waterjet duct
[9]   JIN Shuanbao, WANG Yongsheng Bench test of the mixed-flow waterjet pump[J]. Journal of Harbin Engineering University, 2014, 35 (1): 115- 118
[10]   刘承江, 丁江明, 苏永生, 等 喷水推进泵空化性能数值模拟与试验验证[J]. 船舶力学, 2018, 22 (1): 38- 44
LIU Chengjiang, DING Jiangming, SU Yongsheng, et al Numerical simulation of cavitation performance of waterjet pump and test validation[J]. Journal of Ship Mechanics, 2018, 22 (1): 38- 44
[11]   HUANG R, YE W, DAI Y, et al Investigations into the unsteady internal flow characteristics for a waterjet propulsion system at different cruising speeds[J]. Ocean Engineering, 2020, 203: 107218
doi: 10.1016/j.oceaneng.2020.107218
[12]   DUERR P, VON ELLENRIEDER K D Scaling and Numerical analysis of nonuniform waterjet pump inflows[J]. IEEE Journal of Oceanic Engineering, 2015, 40 (3): 701- 709
doi: 10.1109/JOE.2014.2339395
[13]   刘月伟, 潘中永 船用喷水推进器内部流动特性分析[J]. 排灌机械工程学报, 2021, 40 (3): 1- 7
LIU Yuewei, PAN Zhongyong Analysis of internal flow characteristics of marine water-jet propulsion[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 40 (3): 1- 7
[14]   郭军, 陈作钢, 戴原星, 等 喷水推进器进流面获取方法及其应用[J]. 上海交通大学学报, 2020, 54 (1): 1- 9
GUO Jun, CHEN Zuogang, DAI Yuanxing, et al Research and application of the capture area obtaining method for waterjet[J]. Journal of Shanghai Jiao Tong University, 2020, 54 (1): 1- 9
[15]   孟凯旋. 喷水推进器内部流动及推力特性研究[D]. 镇江: 江苏大学, 2019.
MENG Kaixuan. Research on the inner flow and thrust characteristics of water-jet propulsion [D]. Zhenjiang: Jiangsu University, 2019.
[16]   王雪豹. 喷水推进器内部流动特性研究[D]. 镇江: 江苏大学, 2017.
WANG Xuebao. Research on the inner flow of water-jet propulsion [D]. Zhenjiang: Jiangsu University, 2017.
[17]   TAKAI T, KANDASAMY M, STERN F Verification and validation study of URANS simulations for an axial waterjet propelled large high-speed ship[J]. Journal of Marine Science and Technology, 2011, 16 (4): 434- 447
doi: 10.1007/s00773-011-0138-x
[1]   王立祥 船舶喷水推进[J]. 船舶, 1997, (3): 45- 52
WANG Lixiang Waterjet propulsion for ships[J]. Ship and Boat, 1997, (3): 45- 52
[2]   蔡佑林, 王立祥, 李宁, 等 喷水推进与泵喷推进的对比研究[J]. 大电机技术, 2022, (1): 72- 78
CAI Youlin, WANG Lixiang, LI Ning, et al A compartive study of waterjet propulsion and pumpjet propulsion[J]. Large Electric Machine and Hydraulic Turbine, 2022, (1): 72- 78
[3]   蔡佑林, 汲国瑞, 冯超, 等 喷水推进推力测试方法[J]. 中国造船, 2022, 63 (4): 107- 114
CAI Youlin, JI Guorui, FENG Chao, et al Thrust measurement method of water jet propulsion[J]. Shipbuilding of China, 2022, 63 (4): 107- 114
[4]   ESLAMDOOST M, VIKSTROM M A body-force model for waterjet pump simulation[J]. Applied Ocean Research, 2019, 90: 101832
doi: 10.1016/j.apor.2019.05.017
[5]   ESLAMDOOST A, LARSSON L, BENSOW R Waterjet propulsion and thrust deduction[J]. Journal of Ship Research, 2014, 58 (4): 201- 215
doi: 10.5957/jsr.2014.58.4.201
[6]   BULTEN N W H, VAN ESCH B P M Fully transient CFD analyses of waterjet pumps[J]. Marine Technology and SNAME News, 2007, 44 (3): 185- 193
doi: 10.5957/mt1.2007.44.3.185
[7]   曾文德, 王永生, 刘承江 喷水推进混流泵流体动力性能的CFD研究[J]. 中国舰船研究, 2009, 4 (4): 18- 21
ZENG Wende, WANG Yongsheng, LIU Chengjiang Hydrodynamic performance of the jet propulsion mixed-flow pump by CFD simulation[J]. Chinese Journal of Ship Research, 2009, 4 (4): 18- 21
[8]   HUANG R, ZHANG R, WANG Y, et al Experimental and numerical investigations into flow features in an intake duct for the waterjet propulsion under mooring conditions[J]. Acta Mechanica Sinica, 2021, 37 (5): 826- 843
doi: 10.1007/s10409-021-01097-9
[9]   靳栓宝, 王永生 混流式喷水推进泵台架试验[J]. 哈尔滨工程大学学报, 2014, 35 (1): 115- 118
[18]   张恒, 蔡佑林, 林辉, 等. 基于CFD的喷水推进船尾迹场分析[C]//第16届全国水动力学学术会议暨第32届全国水动力学研讨会论文集(下册). 无锡: 海洋出版社, 2021: 307-313.
ZHANG Heng, CAI Youlin, LIN Hui, et al. Analysis of wake induced by waterjet self-propelled ship based on CFD [C]// Proceedings of the 16th National Congress on Hydrodynamics and the 32nd National Conference on Hydrodynamics . Wuxi: China Ocean Press, 2021: 307-313.
[19]   易文彬, 王永生, 刘承江, 等 浸没式喷水推进自航试验及数值模拟[J]. 船舶力学, 2017, 21 (4): 407- 412
YI Wenbin, WANG Yongsheng, LIU Chengjiang, et al Submerged waterjet self-propulsion test and numerical simulation[J]. Journal of Ship Mechanics, 2017, 21 (4): 407- 412
[20]   罗晔, 邹璐, 邹早建, 等 喷水推进船模斜拖试验的数值模拟[J]. 水动力学研究与进展, 2022, 37 (3): 408- 414
LUO Ye, ZOU Lu, ZOU Zaojian, et al Numerical simulations of oblique towing tests for waterjet-propelled ship model[J]. Chinese Journal of Hydrodynamics, 2022, 37 (3): 408- 414
[21]   鲁航, 张富毅, 陈泰然, 等 喷水推进舰艇自航运动数值计算研究[J]. 船舶力学, 2022, 26 (8): 1140- 1149
LU Hang, ZHANG Fuyi, CHEN Tairan, et al Numerical investigation on the self-propelled motion of water jet propelled ship[J]. Journal of Ship Mechanics, 2022, 26 (8): 1140- 1149
[22]   严鹏. 大流量泵内部非定常流动特性及水力激振研究[D]. 杭州: 浙江大学, 2017.
YAN Peng. Research on unsteady characteristics and flow induced vibration of large flow rate pumps [D]. Hangzhou: Zhejiang University, 2017.
[23]   任芸, 朱祖超, 吴登昊, 等 基于熵产的离心泵流动损失特性研究[J]. 哈尔滨工程大学学报, 2021, 42 (2): 266- 272
REN Yun, ZHU Zuchao, WU Denghao, et al Flow loss characteristics of a centrifugal pump based on entropy production[J]. Journal of Harbin Engineering University, 2021, 42 (2): 266- 272
[24]   曹健, 裴吉, 顾延东, 等. 基于熵增理论的混流泵水力损失分析[C]//水力机械学科发展战略研讨会暨第11届全国水力机械及其系统学术年会论文集. 北京: [s. n. ], 2018: 146-156.
CAO Jian, PEI Ji, GU Yandong, et al. Flow losses analysis in a mixed flow pump with annular volute by entropy production evaluation [C]// Seminar on the Development Strategy of Hydraulic Machinery Discipline and the 11th National Annual Conference on Hydraulic Machinery and Systems . Beijing: [s. n. ], 2018: 146-156.
[25]   李诗徉. 基于循环平稳和数值模拟的泵阀动特性研究与改进设计[D]. 杭州: 浙江大学, 2018.
LI Shiyang. Research and improved design of dynamic characteristics of pumps and valves based on cyclostationarity and numerical simulation [D]. Hangzhou: Zhejiang University, 2018.
[26]   管洪雨. 离心泵作液力透平的水力性能及内部流动特性研究[D]. 咸阳: 西北农林科技大学, 2022.
GUAN Hongyu. Study on hydraulic performance and internal flow characteristics of centrifugal pump as turbine [D]. Xianyang: Northwest A&F University, 2022.
[27]   王义乾, 桂南 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展, 2019, 34 (4): 413- 429
WANG Yiqian, GUI Nan A review of the third-generation vortex identification method and its applications[J]. Chinese Journal of Hydrodynamics, 2019, 34 (4): 413- 429
[1] WU Da-zhuan, XU Bin-jie, WU Peng, LI Zhi-feng, WANG Le-qing. Internal clearance flow and leakage loss in multi-stage
centrifugal pump
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1393-1398.
[2] HAO Zong-Rui, WANG Le-Qi, TUN Da-Zhuai. Numerical simulation of high-speed jet flow field of underwater jet propulsion craft[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(2): 408-412.