Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 207-218    DOI: 10.3785/j.issn.1008-973X.2024.01.022
    
Thermal analysis of asymmetric hybrid pole permanent magnet motor based on magneto-thermal coupling method
Liwei SHI(),Zhengwei LIU,Zhiwei QIAO,Xin ZHAO,Yingjie ZHU
School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
Download: HTML     PDF(2989KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A topology of asymmetric hybrid pole permanent magnet motor (AHPPMM) was proposed for the problem of high loss and high heat generation of conventional interior permanent magnet motor. The topology of the asymmetric hybrid pole permanent magnet motor was introduced. The electromagnetic characteristics and loss distribution characteristics of the two were compared and analyzed. The equivalent thermal conductivity was determined based on the features of the distributed winding structure of the AHPPMM, and the lumped parameter thermal model was constructed. Then a unidirectional magneto-thermal coupling model was established to calculate the temperature distribution of each motor component and verify the correctness of the thermal network model. A bi-directional magneto-thermal coupling model was established by considering the temperature influence on the permanent magnet material in order to compare and analyze the influence law of different current densities on the motor temperature rise. A prototype was fabricated and a temperature rise experiment platform was constructed. The effectiveness and rationality of the new topology were verified. The accuracy of the calculation results of the bi-directional magneto-thermal coupling method was validated.



Key wordspermanent magnet motor      asymmetric hybrid pole      thermal analysis      magneto-thermal coupling      lumped parameter thermal model     
Received: 03 July 2023      Published: 07 November 2023
CLC:  TM 351  
Fund:  国家自然科学基金资助项目(51905066)
Cite this article:

Liwei SHI,Zhengwei LIU,Zhiwei QIAO,Xin ZHAO,Yingjie ZHU. Thermal analysis of asymmetric hybrid pole permanent magnet motor based on magneto-thermal coupling method. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 207-218.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.022     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/207


基于磁热耦合法的非对称混合磁极永磁电机热分析

针对传统内置永磁电机损耗高、发热量大的问题,提出非对称混合磁极永磁电机拓扑结构. 介绍非对称混合磁极永磁电机的拓扑结构,对比分析两者的电磁特性与损耗分布特性. 针对非对称混合磁极永磁电机分布式绕组的结构特点,对绕组进行等效处理,确定等效导热系数,建立集中参数热网络模型. 建立单向磁热耦合模型,计算电机各部件的温度分布,验证了热网络模型的正确性. 考虑到温度对永磁材料的影响,建立双向磁热耦合模型,对比分析不同电流密度对电机温升的影响规律. 试制一台样机并搭建温升试验平台进行温升试验,验证了新型拓扑结构的有效性与合理性以及磁热双向耦合法计算结果的准确性.


关键词: 永磁电机,  非对称混合磁极,  热分析,  磁热耦合,  集中参数热模型 
Fig.1 Rotor topology of asymmetric hybrid pole permanent magnet motor and conventional interior permanent magnet motor
Fig.2 Simplified magnetic circuit comparison diagram of asymmetric hybrid pole permanent magnet motor and conventional interior permanent magnet motor
Fig.3 Structure of non-uniform air gap rotor
参数 参数值
AHPPMM CIPMM
定子槽数 48 48
转子极数 8 8
定子外径/mm 159 159
定子内径/mm 107.4 107.4
气隙长度/mm 0.7/1.31 0.7
轴向长度/mm 91 91
转子外径/mm 106 106
永磁体用量/mm3 6.18×104 7.65×104
Tab.1 Main geometric parameters of motors
Fig.4 Magnetic field distribution of asymmetric hybrid pole permanent magnet motor and conventional interior permanent magnet motor
Fig.5 Waveform of air gap flux density
Fig.6 Waveform of no-load back EMF
Fig.7 Harmonic analysis of air gap flux density
Fig.8 Harmonic analysis of no-load back EMF waveform
Fig.9 Comparison of eddy current loss
Fig.10 Comparison of iron core loss
Fig.11 Comparison of total losses
Fig.12 Lumped parameter thermal network of asymmetric hybrid pole permanent magnet motor
材料 λ/ (W·m?1·K?1) c /(J·kg?1·K?1) ρ/ (kg·m?3)
硅钢 40 426 7700
387 383.1 8954
N35UH 7.6 4600 7500
槽绝缘纸 0.2 1290 1060
Tab.2 Material data of asymmetric hybrid pole permanent magnet motor
Fig.13 Schematic diagram and equivalent model of winding for asymmetric hybrid pole permanent magnet motor
部件 节点温升/℃
电机外壳 45.4 45.1 47.9 47.7 47.5
定子轭部 56.3 56.4 56.3
电枢绕组 60.3 60.5 61.8 60.5 60.5
定子齿部 56.2 57.4 56.8
转子极靴 45.3 45.5 45.3
永磁体 46.1 46.4 46.3 46.2
转子轭部 45.1 45.5 45.3
端盖 42.8 44.6
轴承 47.9 51.2
Tab.3 Calculation results of temperature rise for each component under rated operation of asymmetric hybrid pole permanent magnet motor
Fig.14 Three-dimensional diagram of asymmetric hybrid pole permanent magnet motor
Fig.15 Temperature distribution of windings and permanent magnets calculated by unidirectional magneto-thermal coupling
Fig.16 Temperature distribution of stator and rotor calculated by unidirectional magneto-thermal coupling
Fig.17 Flow chart of bi-directional magneto-thermal coupling
Fig.18 Temperature distribution of windings and permanent magnets calculated by bi-directional magneto-thermal coupling
Fig.19 Temperature distribution of stator and rotor calculated by bi-directional magneto-thermal coupling
Fig.20 Comparison of output torque between unidirectional magneto-thermal coupling method and bi-directional magneto-thermal coupling method
J/(A·mm?2) tcmax/℃ tcavg/℃ tnmax/℃ tnavg/℃ trmax/℃ travg/℃ tsmax/℃ tsavg/℃
2.14 66.35 60.64 47.31 43.53 49.56 43.58 59.47 55.78
2.25 69.44 63.14 48.94 44.92 51.33 44.97 61.94 57.96
2.31 72.70 65.75 50.65 46.37 53.19 46.43 64.51 60.24
2.40 76.22 68.56 52.48 47.93 55.19 47.99 67.28 62.70
2.48 79.91 71.52 54.42 49.58 57.29 49.64 70.19 65.29
2.57 83.78 74.63 56.45 51.31 59.50 51.38 73.25 68.01
2.65 87.97 77.96 58.63 53.16 61.87 53.23 76.53 70.92
2.73 92.35 81.46 60.93 55.11 64.37 55.19 79.99 73.99
2.82 97.01 85.19 63.36 57.19 67.02 57.27 83.66 77.25
2.91 101.90 89.11 65.93 59.37 69.80 59.45 87.51 80.68
3.04 109.79 95.40 70.04 62.87 74.28 62.96 93.71 86.18
Tab.4 Calculation of temperature rise of asymmetric hybrid pole permanent magnet motor components by bi-directional magneto-thermal coupling under different current densities
Fig.21 Maximum temperature rise of asymmetric hybrid pole permanent magnet motor under different current density
Fig.22 Prototype and temperature rise experiment platform
Fig.23 Steady state temperature cloud
Fig.24 Maximum temperature rise curve of motor
Fig.25 Experimental platform of no-load back EMF
Fig.26 Waveform of measured no-load back EMF
Fig.27 THD of no-load back EMF
[1]   LIU Xiangdong, CHEN Hao, ZHAO Jing, et al Research on the performances and parameters of interior PMSM used for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (6): 3533- 3545
doi: 10.1109/TIE.2016.2524415
[2]   寇宝泉, 赵晓坤, 张浩泉, 等 永磁同步电机电磁结构及磁场调节技术的综述分析[J]. 中国电机工程学报, 2021, 41 (20): 7126- 7141
KOU Baoquan, ZHAO Xiaokun, ZHANG Haoquan, et al Review and analysis of electromagnetic structure and magnetic field regulation technology of the permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2021, 41 (20): 7126- 7141
doi: 10.13334/J.0258-8013.PCSEE.202259
[3]   LV Bingchang, SHI Liwei, LI Lintao Performance analysis of asymmetrical less-rare-earth permanent magnet motor for electric vehicle[J]. IET Electrical Systems in Transportation, 2021, 12 (1): 36- 48
[4]   LI Xiang, KAN Chaohao, REN Taian, et al Thermal network modeling and thermal stress evaluation for a high-power linear ultrasonic motor[J]. IEEE Transactions on Industry Applications, 2022, 58 (6): 7181- 7191
doi: 10.1109/TIA.2022.3197681
[5]   林明耀, 乐伟, 林克曼, 等 轴向永磁电机热设计及其研究发展综述[J]. 中国电机工程学报, 2021, 41 (6): 1914- 1929
LIN Mingyao, LE Wei, LIN Keman, et al Overview on research and development of thermal design methods of axial flux permanent magnet machines[J]. Proceedings of the CSEE, 2021, 41 (6): 1914- 1929
[6]   QI Ji, HUA Wei, ZHANG Hengliang Thermal analysis of modular-spoke-type permanent-magnet machines based on thermal network and FEA method[J]. IEEE Transactions on Magnetics, 2019, 55 (7): 1- 5
[7]   ZHANG Jian, ZHANG Zhuoran, XIA Yiwen, et al Thermal analysis and management for doubly salient brushless DC generator with flat wire winding[J]. IEEE Transactions on Energy Conversion, 2020, 35 (2): 1110- 1119
doi: 10.1109/TEC.2020.2966046
[8]   ZHANG Jian, ZHANG Zhuoran, LI Yu Thermal deformation analysis of water cooling doubly salient brushless DC generator with stator field winding[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (4): 2700- 2710
[9]   LIANG Dawei, ZHU Ziqiang, ZHANG Yafeng, et al A hybrid lumped-parameter and two-dimensional analytical thermal model for electrical machines[J]. IEEE Transactions on Industry Applications, 2021, 57 (1): 246- 258
doi: 10.1109/TIA.2020.3029997
[10]   史立伟, 韩震, 周晓宇, 等 短磁路E型定子铁心电励磁双凸极发电机电磁特性分析[J]. 电机与控制学报, 2020, 24 (10): 109- 119
SHI Liwei, HAN Zhen, ZHOU Xiaoyu, et al Electromagnetic characteristics analysis of E-core stator doubly salient electro-magnetic generator with short circuit[J]. Electric Machines and Control, 2020, 24 (10): 109- 119
doi: 10.15938/j.emc.2020.10.012
[11]   韩雪岩, 祁坤, 段庆亮 起重机用外转子PMSM全域三维瞬态温度场数值计算与分析[J]. 电机与控制学报, 2015, 19 (5): 44- 52
HAN Xueyan, QI Kun, DUAN Qingliang Numerical calculation and analysis of 3D transient temperature field in the exterior-rotor PMSM for crane[J]. Electric Machines and Control, 2015, 19 (5): 44- 52
doi: 10.15938/j.emc.2015.05.007
[12]   宋守许, 胡孟成, 杜毅, 等 混合定子铁心再制造电机三维温度场分析[J]. 电机与控制学报, 2020, 24 (6): 33- 42
SONG Shouxu, HU Mengcheng, DU Yi, et al Temperature field investigation of remanufacturing motor with mixed stator core[J]. Electric Machines and Control, 2020, 24 (6): 33- 42
doi: 10.15938/j.emc.2020.06.005
[13]   SHI Yanwen, WANG Jiabin, WANG Bo Transient 3-D lumped parameter and 3-D FE thermal models of a PMASynRM under fault conditions with asymmetric temperature distribution[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (6): 4623- 4633
doi: 10.1109/TIE.2020.2988224
[14]   丁树业, 江欣, 朱敏, 等 基于集总参数热网络法的永磁同步电机启动及稳态温升分析[J]. 电机与控制学报, 2020, 24 (5): 143- 150
DING Shuye, JIANG Xin, ZHU Min, et al Starting and steady temperature rise investigation for permanent magnet synchronous motor based on lumped-parameter thermal-network[J]. Electric Machines and Control, 2020, 24 (5): 143- 150
[15]   吴胜男, 郝大全, 佟文明 基于等效热网络法和CFD法高速永磁同步电机热计算研究[J]. 电机与控制学报, 2022, 26 (7): 29- 36
WU Shengnan, HAO Daquan, TONG Wenming Thermal calculation of high speed permanent magnet synchronous motor based on equivalent thermal network and CFD method[J]. Electric Machines and Control, 2022, 26 (7): 29- 36
[16]   王晓远, 高鹏 等效热网络法和有限元法在轮毂电机温度场计算中的应用[J]. 电工技术学报, 2016, 31 (16): 26- 33
WANG Xiaoyuan, GAO Peng Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor[J]. Transactions of China Electrotechnical Society, 2016, 31 (16): 26- 33
doi: 10.3969/j.issn.1000-6753.2016.16.004
[17]   HWANG S W, RYU J Y, CHIN J W, et al Coupled electromagnetic-thermal analysis for predicting traction motor characteristics according to electric vehicle driving cycle[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (5): 4262- 4272
doi: 10.1109/TVT.2021.3071943
[1] XU Xiu qin, MO Jiong jiong, WANG Zhi yu, SHANG Yong heng,GUO Li li, YU Fa xin. Equivalent method of GaAs PHEMT MMIC for thermal simulation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2002-2008.
[2] ZHANG Han ni, ZHANG Qi, HUANG Su rong, ZHANG Zhou yun. Temperature calculation for high power density permanent magnet motor with consideration of heat transfer in bearings[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2410-2417.
[3] ZHOU Hua, ZHANG Yan-wei,LI He-ping, WANG Yang, LIU Jian-zhong, ZHOU Jun-hu, CEN. Study on thermal oxidation characteristics and kinetics of boron-based fuel-rich in different atmosphere[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1987-1991.
[4] AN Yue-jun, AN Hui, LI Yong, SUN Dan, ZHAO Wen-qiang. Study on the cogging torque of surface-mounted permanent
magnet motor with pole-width modulation structure
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1708-1714.
[5] ZHOU Dun-Jie, FAN Cheng-Zhi, XIE Yun-Yue, LEI Qin-Fen. Method for reducing cogging torque based on magnet skewing in
disctype permanent magnet motors
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1548-1552.
[6] ZHANG Hui-feng, GUAN Fu-ling. Thermal-structural coupling analysis of deployable truss antenna[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2320-2325.