Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1410-1417    DOI: 10.3785/j.issn.1008-973X.2023.07.016
    
Vibration suppression band gap of rheological soil row piles foundation
Hua-zhong YANG1(),Jian-chang ZHAO1,*(),Yun-yan YU1,Li-an WANG2
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of Railway Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
Download: HTML     PDF(1321KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic damping expression of rheological soil was derived based on the time-dependent modulus, and the continuum model of the pile-soil periodic structure was constructed. The energy band structure and band gap of the pile-soil periodic system were calculated by using the multiple scattering method. The band gap characteristics and parameter influence of shear wave in rheological soil pile foundation were analyzed through an example. Results showed that the damping ratio of rheological soil changed non-monotonously with frequency. The amplitude of damping ratio was determined by the initial and final modulus ratio, and the change rate of damping ratio with frequency was determined by the relaxation time. The rheological properties of the soil lead to a higher frequency of band gaps in the actual engineering of row pile foundations than the theoretical value, and the bandwidth decreases, weakening the vibration isolation effect of row piles. Eliminating the rheological properties of the soil around the piles will be conducive to the vibration isolation effect of row piles.



Key wordsrheological soil      row pile      periodic structure      multiple scattering method      vibration suppression band gap     
Received: 07 July 2022      Published: 17 July 2023
CLC:  TU 470  
Fund:  甘肃省自然科学基金资助项目(22JR11RA155);兰州交通大学青年科学基金资助项目(1200061136)
Corresponding Authors: Jian-chang ZHAO     E-mail: 419403362@qq.com;13609382011@163.com
Cite this article:

Hua-zhong YANG,Jian-chang ZHAO,Yun-yan YU,Li-an WANG. Vibration suppression band gap of rheological soil row piles foundation. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1410-1417.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.016     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1410


流变性土排桩地基的禁振带隙

基于时间依赖性模量推导流变性土的动阻尼表达式,构建桩-土周期结构的连续介质模型,利用多重散射法计算桩-土周期系统的能带结构和带隙. 通过算例分析,分析流变性土排桩地基中剪切波的带隙特征及参数影响. 结果表明,流变性土的阻尼比随频率发生非单调性变化,初始和最终状态的模量比决定阻尼比的幅值,而松弛时间决定阻尼比随频率的变化速率. 土体的流变性导致实际工程中排桩地基的带隙频率高于理论值,且带宽减小,减弱了排桩的隔振效果,消除桩周土的流变性将有利于排桩发挥隔振作用.


关键词: 流变性土,  排桩,  周期结构,  多重散射法,  禁振带隙 
Fig.1 Analysis model of pile-soil periodic structure
Fig.2 Variation curve of damping ratio with frequency
Fig.3 First irreducible Brillouin zone
Fig.4 Comparison chart of degradation result of proposed method and reference [26]
参数 参数值
ρs/(kg·m?3) 1 900
μ0/ MPa 30
vs 0.25
ρp/(kg·m?3) 2 500
λp/GPa 8.3
μp/GPa 12.5
r0/m 0.65
a/m 2
Tab.1 Table of calculation parameters of soil and pile
Fig.5 Band gap results comparison between constant damping model and rheological model
η (ξd)max Rayleigh模型 流变模型(τ = 0.001 s)
[fl, fu] fu? fl [fl, fu] fu? fl
1 0 [0.619, 0.730] 0.111 [0.619, 0.730] 0.111
1.2 0.083 [0.620, 0.731] 0.111 [0.704, 0.781] 0.077
1.4 0.149 [0.621, 0.732] 0.111 [0.719, 0.788] 0.069
2.0 0.283 [0.626, 0.737] 0.111 [0.760, 0.809] 0.049
10 0.606 [0.648, 0.759] 0.111 [0.915, 1.096] 0.181
100 0.697 [0.657, 0.765] 0.108 [1.165, 1.608] 0.443
200 0.702 [0.659, 0.766] 0.107 [1.383, 1.790] 0.407
Tab.2 Band gap results with different damping ratios
Fig.6 Variation curve of band gap with modulus ratio
Fig.7 Effect of relaxation time on band gap
Fig.8 Variation curve of band gap with Fs
[1]   ALEXANDROS L, YIANNIS T, PRODROMOS N Efficient mitigation of high-speed trains induced vibrations of railway embankments using expanded polystyrene blocks[J]. Transportation Geotechnics, 2020, 22 (5): 3- 12
[2]   王立安, 赵建昌, 王作伟 汽车行驶诱发地表振动的解析研究[J]. 力学学报, 2020, 41 (5): 48- 54
WANG Li-an, ZHAO Jian-chang, WANG Zuo-wei Analytical research on surface vibration induced by vehicle driving[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 41 (5): 48- 54
[3]   MA M, JIANG B L, GAO J, et al Experimental study on attenuation zone of soil-periodic piles system[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105738
doi: 10.1016/j.soildyn.2019.105738
[4]   温雅歌. 桩-饱和土周期结构在环境减振中的应用[D]. 北京: 北京交通大学, 2015.
WEN Ya-ge. Application of pile-saturated soil periodic structure in environmental vibration reduction [D]. Beijing: Beijing Jiaotong University, 2015.
[5]   PU X B, SHI Z F Surface-wave attenuation by periodic pile barriers in layered soils[J]. Construction and Building Materials, 2018, 188 (8): 177- 187
[6]   LIANG J W, HAN B, TODOROVSKA M I, et al 2D dynamic structure-soil-structure interaction for twin buildings in layered half-space II: incident SV-waves[J]. Soil Dynamics and Earthquake Engineering, 2018, 113 (8): 356- 390
[7]   SHI Z F, WEN Y G, MENG Q J Propagation attenuation of plane waves in saturated soil by pile barriers[J]. International Journal of Geomechanics, 2017, 17 (9): 04017053
doi: 10.1061/(ASCE)GM.1943-5622.0000963
[8]   MENG Q J, SHI Z F Vibration isolation of plane waves by periodic pipe pile barriers in saturated soil[J]. Journal of Aerospace Engineering (ASCE), 2019, 32 (1): 04018114
doi: 10.1061/(ASCE)AS.1943-5525.0000938
[9]   孟庆娟, 石志飞 基于周期理论和COMSOL PDE的排桩减振特性研究[J]. 岩土力学, 2018, 39 (11): 4251- 4260
MENG Qing-juan, SHI Zhi-fei Study on vibration reduction characteristics of piles based on period theory and COMSOL PDE[J]. Rock and Soil Mechanics, 2018, 39 (11): 4251- 4260
[10]   孟庆娟, 乔京生 饱和土中周期性排桩隔离体波的性能研究[J]. 振动与冲击, 2020, 39 (24): 179- 186
MENG Qing-juan, QIAO Jing-sheng Study on the performance of periodic piles to isolate body waves in saturated soil[J]. Journal of Vibration and Shock, 2020, 39 (24): 179- 186
doi: 10.13465/j.cnki.jvs.2020.24.025
[11]   PU X, SHI Z, XIANG H Feasibility of ambient vibration screening by periodic geo-foam-filled trenches[J]. Soil Dynamics and Earthquake Engineering, 2018, 104 (10): 228- 235
[12]   MENG L K, CHENG Z B, SHI Z F Vibration mitigation in saturated soil by periodic in-filled pipe pile barriers[J]. Computers and Geotechnics, 2020, 124 (8): 103633
[13]   陈晓斌, 王业顺, 唐孟雄, 等 周期性四组元局域共振桩带隙特征及隔振性能研究[J]. 岩土力学, 2022, 43 (1): 110- 118
CHEN Xiao-bin, WANG Ye-shun, TANG Meng-xiong, et al Study on band gap characteristics and vibration isolation of local resonance pile with periodic four component[J]. Rock and Soil Mechanics, 2022, 43 (1): 110- 118
doi: 10.16285/j.rsm.2021.0727
[14]   KABBAJ M, TAVENAS F, LEROUEIL S In situ and laboratory stress-strain relationships[J]. Géotechnique, 1988, 38 (1): 83- 100
[15]   LE T M, FATAHI B, KHABBAZ H Viscous behaviour of soft clay and inducing factors[J]. Geotechnical and Geological Engineering, 2012, 30 (5): 1069- 1083
doi: 10.1007/s10706-012-9535-0
[16]   蔡袁强, 梁旭, 郑灶锋, 等 半透水边界的黏弹性土层在循环荷载下的一维固结[J]. 土木工程学报, 2003, 36 (8): 86- 90
CAI Yuan-qiang, LIANG Xu, ZHENG Zao-feng, et al One-dimensional consolidation of viscoelastic soil layer with semi-permeable boundaries under cyclic loading[J]. China Civil Engineering Journal, 2003, 36 (8): 86- 90
doi: 10.3321/j.issn:1000-131X.2003.08.016
[17]   曾庆有, 周健, 屈俊童 考虑应力应变时间效应的桩基长期沉降计算方法[J]. 岩土力学, 2005, 26 (8): 1283- 1287
ZENG Qing-you, ZHOU Jian, QU Jun-tong Method for long-term settlement prediction of pile-foundation in consideration of time effect of stress-strain relationship[J]. Rock and Soil Mechanics, 2005, 26 (8): 1283- 1287
doi: 10.3969/j.issn.1000-7598.2005.08.019
[18]   艾智勇, 王禾慕, 金晶 层状分数阶黏弹性饱和地基与梁共同作用的时效研究[J]. 力学学报, 2021, 53 (5): 1402- 1411
AI Zhi-yong, WANG He-mu, JIN Jing Aging study on the interaction between layered fractional viscoelastic saturated foundation and beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (5): 1402- 1411
doi: 10.6052/0459-1879-20-447
[19]   AI Z Y, ZHAO Y Z, CHENG Y C Time-dependent response of laterally loaded piles and pile groups embedded in transversely isotropic saturated viscoelastic soils[J]. Computers and Geotechnics, 2020, 128 (12): 103815
[20]   何利军, 孔令伟, 吴文军, 等 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32 (Supple.2): 239- 243
HE Li-jun, KONG Ling-wei, WU Wen-jun, et al A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32 (Supple.2): 239- 243
doi: 10.16285/j.rsm.2011.s2.022
[21]   汪磊, 李林忠, 徐永福, 等 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. 岩土力学, 2018, 39 (11): 4142- 4148
WANG Lei, LI Lin-zhong, XU Yong-fu, et al Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary[J]. Rock and Soil Mechanics, 2018, 39 (11): 4142- 4148
doi: 10.16285/j.rsm.2017.0659
[22]   吴奎, 邵珠山, 秦溯 流变岩体中让压支护作用下隧道力学行为研究[J]. 力学学报, 2020, 52 (3): 890- 900
WU Kui, SHAO Zhu-shan, QIN Su Study on mechanical behavior of tunnel under the action of yielding support in rheological rock mass[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (3): 890- 900
[23]   张婉洁, 牛江川, 申永军, 等 含分数阶Bingham模型的阻尼减振系统时滞半主动控制[J]. 力学学报, 2022, 54 (1): 173- 183
ZHANG Wan-jie, NIU Jiang-chuan, SHEN Yong-jun, et al Time-delay semi-active control of damping and vibration reduction system with fractional Bingham model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (1): 173- 183
doi: 10.6052/0459-1879-21-467
[24]   LAKERS R S. Viscoelastic materials [M]. New York: Cambridge University Press, 2009.
[25]   PAO Y H, MAO C C. Diffraction of elastic waves and dynamic stress concentration [M]. California: Rand Press, 1973.
[26]   HUANG J K, SHI Z F Vibration reduction of plane waves using periodic in-filled pile barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 2015, 141 (6): 04015018
doi: 10.1061/(ASCE)GT.1943-5606.0001301
[27]   郑长杰, 何育泽, 丁选明 下卧基岩黏弹性地基上刚性条形基础竖向振动响应研究[J]. 岩土力学, 2022, 43 (6): 1434- 1442
ZHENG Chang-jie, HE Yu-ze, DING Xuan-ming Vertical vibration response of rigid strip footings on a viscoelastic soil layer overlying bedrock[J]. Rock and Soil Mechanics, 2022, 43 (6): 1434- 1442
[1] ZOU Sheng-feng, LI Jin-zhu, WANG Zhong-jin, LAN Lu, WANG Wen-jun, XIE Xin-yu. Seepage test and empirical models for soils based on GDS apparatus[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 856-862.
[2] LI Chuan-xun,HU An-feng,XIE Kang-he,ZHANG Xiu-li. Semi-analytical solution of one-dimensional consolidation with
exponential flow under time-depending loading
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 27-32.
[3] XIE Xin-yu, LI Jin-zhu, WANG Wen-jun, LIU Kai-fu, ZHU Xiang-rong. Rheological test and empirical model of Ningbo soft soil[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 64-71.