Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1242-1250    DOI: 10.3785/j.issn.1008-973X.2023.06.020
    
Blunt method of lift body configuration and aerodynamic performance analysis
Yu-xin YANG(),Ye-si CHEN,Hua YANG,Chang-ju WU*()
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2515KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The sharp edges of a lift body can lead to a harsh aerodynamic thermal environment, which adversely affects the structural strength of the vehicle and produces thermal strain and material ablation. To resolve this problem, an externally tangential circular extension method to blunt the lift body was proposed. Numerical simulation was employed on the configuration under blunt and no-blunt situations. Impacts of parameters on performances, including the lift-drag ratio, the maximum wall heat flux, the volume and the volume ratio were investigated through sensitivity analysis. The no-blunt shape was optimized with the objective to maximize the lift-to-drag ratio, the volume and the volume ratio. A uniform blunt method and a non-uniform blunt method were applied to the optimized shape. The effect of blunt on the aerodynamic thermal characteristics and aerodynamic performance of shapes blunted by two methods were analyzed. The results indicate that influence of design variables on performance are not altered after blunt. The enlargement of blunt radius brings out decrease of maximum wall heat flux and a reduced degree of heat flux attenuation. The uniform blunt method not only leads to leakage of high-pressure gas from windward side of the lift body to leeward side, but also gives rise to decrease in lift-drag ratio and rise in volume ratio. The non-uniform blunt method contributes to diminish loss of high-pressure gas and increase lift-drag ratio slightly. The maximum heat flux of non-uniform blunt shape is well below that of no-blunt one. Both of the two blunt methods have a significant improvement on the thermal environment.



Key wordslift body      aerodynamic characteristic      blunt method      uniform blunt      non-uniform blunt     
Received: 26 May 2022      Published: 30 June 2023
CLC:  V 41  
Fund:  国家自然科学基金资助项目(U20B2007)
Corresponding Authors: Chang-ju WU     E-mail: 22024088@zju.edu.cn;wuchangju@zju.edu.cn
Cite this article:

Yu-xin YANG,Ye-si CHEN,Hua YANG,Chang-ju WU. Blunt method of lift body configuration and aerodynamic performance analysis. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1242-1250.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.020     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1242


升力体构型的边缘钝化方法及气动性能分析

升力体构型的尖锐边缘会产生恶劣的气动热环境,影响飞行器的结构强度并产生热应变和材料烧蚀现象,为此提出通过外切圆延伸钝化升力体的方法. 对钝化前后构型进行数值模拟,通过灵敏度分析,研究钝化前后各设计参数对升阻比、壁面最大热流、容积、容积率的影响规律. 以升阻比、容积、容积率的最大化为目标,优化未钝化外形. 采用一致钝化法、非一致钝化法钝化优化后外形的尖锐边缘,分析钝化对气动力热特性的影响,对比2种钝化方法生成外形的气动性能差异. 计算结果表明:钝化不会改变设计参数对气动性能的影响规律. 钝化半径越大,壁面最大热流密度越低,对热流的缓解能力越弱. 边缘一致钝化后,下表面高压气体泄漏至上表面,升阻比下降,容积率升高. 边缘非一致钝化后,相比未钝化外形,升力体下表面高压气体泄漏减少,升阻比略有升高,最大热流密度升高但远小于未钝化时的最大热流密度. 2种钝化方法均对热环境有明显的改善作用.


关键词: 升力体,  气动性能,  钝化方法,  一致钝化,  非一致钝化 
Fig.1 Lifting body configuration generated based on CST function
Fig.2 Principle of uniform blunt by tangential extension method
Fig.3 Principle of non-uniform blunt by tangential extension method
Fig.4 Computational grid of circular cylinder
Fig.5 Comparison of wall heat flux density between numerical simulation and experiment
Fig.6 Model selected in process of grid independence analysis
Nm/106 CL CD K qmax/(106 W·m?2)
9.89 0.17198 0.04176 4.12 2.221
0.98 0.16964 0.04247 4.00 2.206
1.87 0.17109
0.04180
4.09 2.213
4.68 0.17119 0.04202 4.07 2.218
Tab.1 Comparison of aerodynamic coefficients and maximum wall heat flow density with different meshes
设计参数 取值范围 设计参数 取值范围
θ1/ (°) [3, 7] Nc1Nc2 [1.5, 5.0]
θ2/ (°) [2, 5] n [0.4, 0.6]
W/mm [1800, 3000] R/mm [5, 20]
Tab.2 Design parameters and their values for lift body
性能参数 RM2
未钝化 一致钝化
K 0.99698 0.99426
V 0.99692 0.99626
η 0.99778 0.99822
Tab.3 Accuracy of surrogate model
Fig.7 Contribution of design parameters to performance parameters in absence of lift body blunting
Fig.8 Contribution of design parameters to performance parameters in lift body uniform blunting
Fig.9 Sensitivity analysis of parameters that have greatest contribution to each performance index before and after blunt
Fig.10 Sensitivity analysis of blunted radius to maximum wall heat flow
Fig.11 Optimized shape before and after blunt
钝化类型 K V/m3 η qmax/(106 W·m?2)
未钝化 4.32 2.77 0.219 8.418
一致边缘钝化 3.91 2.96 0.227 1.916
Tab.4 Comparison of performance parameters of optimized shape before and after blunt
Fig.12 Pressure distribution of lift body before and after blunt
构型状态 CD,S CD,F CD
上表面 下表面 钝化边缘 上表面 下表面 钝化边缘
未钝化 1.28×10?4 4.31×10?2 6.09×10?3 1.22×10?2 6.15×10?2
一致钝化 1.46×10?5 4.78×10?2 6.85×10?3 4.74×10?3 4.78×10?2 2.89×10?3 7.24×10?2
Tab.5 Drag coefficient of life body before and after blunt
Fig.13 Wall heat flow distribution before and after blunt
Fig.14 Heat flow distribution along meridian before and after blunt
Fig.15 Heat flow distribution along spanwise at different section positions
Fig.16 Using non-uniform edge blunt on optimized shape
钝化类型 K V/m3 η qmax/(106 W·m?2)
一致边缘钝化 3.91 2.96 0.227 1.916
非一致边缘钝化 4.07 2.80 0.221 1.918
Tab.6 Comparison of performance parameters of two blunt methods
Fig.17 Pressure distribution of lift body after blunt by two methods
Fig.18 Pressure spanwise distribution of profile after blunt by two methods (x=0.5 m)
Fig.19 Wall heat flow distribution of lift body after blunt by two methods
[1]   陈龙云. 高超声速滑翔飞行器集成设计与优化研究[D]. 长沙: 国防科技大学, 2014.
CHEN Long-yun. Research on integrated design and optimization for hypersonic-glide vehicle [D]. Changsha: National University of Defense Technology, 2014.
[2]   马洋, 杨涛, 张青斌 高超声速滑翔式升力体外形设计与优化[J]. 国防科技大学学报, 2014, 36 (2): 34- 40
MA Yang, YANG Tao, ZHANG Qing-bin Configuration optimization design of hypersonic gliding lifting body[J]. Journal of National University of Defense Technology, 2014, 36 (2): 34- 40
[3]   张龙龙. 基于代理模型的飞行器气动外形快速优化设计[D]. 长沙: 国防科技大学, 2015.
ZHANG Long-long. Rapid aerodynamic shape optimization design of aircraft based on surrogate model [D]. Changsha: National University of Defense Technology, 2015.
[4]   陶烨. 高超声速滑翔飞行器低可探测性外形和弹道设计方法研究[D]. 长沙: 国防科技大学, 2017.
TAO Ye. Low detectable shape and trajectory design of hypersonic glide vehicle [D]. Changsha: National University of Defense Technology, 2017.
[5]   解静, 白鹏, 李永远 基于遗传算法的升力体外形优化设计[J]. 气体物理, 2020, 5 (4): 31- 36
XIE Jing, BAI Peng, LI Yong-yuan Configuration design of lifting body based on genetic[J]. Physics of Gases, 2020, 5 (4): 31- 36
[6]   张青青, 张石玉, 赵俊波, 等 升力体外形布局参数对横侧向耦合稳定性的影响分析[J]. 气体物理, 2021, 6 (6): 20- 28
ZHANG Qing-qing, ZHANG Shi-yu, ZHAO Jun-bo, et al Lateral-direction stability analysis on aerodynamic shape parameters for a lifting-body configuration[J]. Physics of Gases, 2021, 6 (6): 20- 28
[7]   刘深深, 陈江涛, 桂业伟, 等 基于数据挖掘的飞行器气动布局设计知识提取[J]. 航空学报, 2021, 42 (4): 524708
LIU Shen-shen, CHEN Jiang-tao, GUI Ye-wei, et al Knowledge discovery for vehicle aerodynamic configuration design using data mining[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (4): 524708
[8]   柳军, 符翔, 王晓燕 一种半径可控的参数化三维前缘钝化设计方法研究[J]. 空天防御, 2018, 1 (1): 18- 24
LIU Jun, FU Xiang, WANG Xiao-yan Study on a parametric design method for blunting 3D leading edge with specified radius[J]. Air and Space Defense, 2018, 1 (1): 18- 24
[9]   TAKASHIMA N, LEWIS M J Navier-Stokes computation of a viscous optimized waverider[J]. Journal of Spacecraft and Rockets, 1994, 31 (3): 383- 391
doi: 10.2514/3.26450
[10]   TINCHER J, BURNETT W. A Hypersonic waverider flight test vehicle: the logical next step [C]// 30th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 1992.
[11]   陈小庆, 贺国宏, 江增荣, 等 乘波构型钝化方法分析及性能研究[J]. 空气动力学学报, 2017, 35 (1): 108- 122
CHEN Xiao-qing, HE Guo-hong, JIANG Zeng-rong, et al Blunt methods for the leading edge of waverider[J]. Acta Aerodynamica Sinica, 2017, 35 (1): 108- 122
[12]   刘济民, 侯志强, 宋贵宝, 等 前缘钝化对乘波体非设计点性能影响分析[J]. 飞行力学, 2011, 29 (1): 21- 25
LIU Ji-min, HOU Zhi-qiang, SONG Gui-bao, et al Performance analysis of waverider with blunt leading edge in off-design regimes[J]. Flight Dynamics, 2011, 29 (1): 21- 25
[13]   刘济民, 侯志强, 宋贵宝, 等 乘波构型的钝化方法及其对性能影响研究[J]. 宇航学报, 2011, 32 (5): 966- 974
LIU Ji-min, HOU Zhi-qiang, SONG Gui-bao, et al Blunted method for waverider and its effect on performance[J]. Journal of Astronautics, 2011, 32 (5): 966- 974
[14]   陈小庆, 侯中喜, 刘建霞, 等 边缘钝化对乘波构型性能影响分析[J]. 宇航学报, 2009, 30 (4): 1334- 1339
CHEN Xiao-qing, HOU Zhong-xi, LIU Jian-xia, et al The blunt leading edge’s influence to the performance of waverider[J]. Journal of Astronautics, 2009, 30 (4): 1334- 1339
[15]   CHEN X Q, HOU Z X, LIU J X, et al Bluntness impact on performance of waverider[J]. Computers and Fluids, 2011, 48 (1): 30- 43
doi: 10.1016/j.compfluid.2011.03.011
[16]   刘建霞. 高超声速非一致边缘钝化乘波构型气动力热基础问题研究[D]. 长沙: 国防科技大学, 2013.
LIU Jian-xia. Study on the aerodynamic and aero-heating basic problems of hypersonic nonuniform blunt waverider [D]. Changsha: National University of Defense Technology, 2013.
[17]   刘建霞, 尘军, 侯中喜, 等 一种乘波构型边缘钝化方法的仿真与试验研究[J]. 空气动力学学报, 2014, 32 (2): 171- 176
LIU Jian-xia, CHEN Jun, HOU Zhong-xi, et al Numerical and experimental study of one blunt method for waverider configuration[J]. Acta Aerodynamica Sinica, 2014, 32 (2): 171- 176
[18]   罗浩, 张艳华, 张登成, 等 类乘波构型机身的设计及钝化对其性能的影响[J]. 固体火箭技术, 2020, 43 (3): 383- 392
LUO Hao, ZHANG Yan-hua, ZHANG Deng-cheng, et al Design of quasi-waverider fuselage and the effect of bluntness on its performance[J]. Journal of Solid Rocket Technology, 2020, 43 (3): 383- 392
[19]   LI S, WANG Z, HUANG W, et al Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic flows[J]. Acta Astronautica, 2017, 137: 362- 372
doi: 10.1016/j.actaastro.2017.05.001
[20]   RODI P. Integration of optimized leading edge geometries onto waverider configurations [C]// 53rd AIAA Aerospace Sciences Meeting. Kissimmee: AIAA, 2015.
[21]   KONTOGIANNIS K, CERMINARA A, TAYLOR N, et al. Parametric geometry models for hypersonic aircraft components: blunt leading edges [C]// 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conferences. Glasgow: AIAA, 2015.
[22]   陈雪冬, 王发民 钝化前缘乘波布局及其一体化构型气动特性[J]. 航空动力学报, 2013, 28 (2): 379- 384
CHEN Xue-dong, WANG Fa-min Aerodynamic characteristics of waverider and its integrated configuration with blunt leading edge[J]. Journal of Aerospace Power, 2013, 28 (2): 379- 384
[23]   刘建霞, 侯中喜, 陈小庆, 等 高超声速滑翔飞行器气动性能的数值模拟研究[J]. 国防科技大学学报, 2012, 34 (4): 22- 27
LIU Jian-xia, HOU Zhong-xi, CHEN Xiao-qing, et al Numerical simulation on the aerodynamic performance of hypersonic glide vehicle[J]. Journal of National University of Defense Technology, 2012, 34 (4): 22- 27
[1] LIU Li-ning, CHI Xue-feng, DU Guang-sheng, LEI Li. Aerodynamic characteristics of vans during accelerated overtaking process in crosswinds[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 174-179.
[2] SHI Hai-min, YU Xiao-li, HUANG Yu-qi, LIU Zhen-tao, LI Si-wen, LU Guo-dong. Shroud depth structure of multi-fans cooling package[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1844-1850.
[3] LV Yi, LOU Wen-Juan, SUN Zhen-Mao, et al. Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 174-179.