Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 55-62    DOI: 10.3785/j.issn.1008-973X.2023.01.006
    
Transient characteristic of thermoelectric cooler with heating element in confined space
Fan-kai MENG(),Chen-xin XU,Yue-tong SUN
College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Download: HTML     PDF(2271KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A transient model of thermoelectric refrigerator working in a cooling space with a heating element was established based on the finite-time thermodynamic theory in order to analyze the influence of heating element on the transient characteristics of thermoelectric cooler in confined space. The influence of key parameters on the transient performance of the thermoelectric refrigerator under different working conditions was analyzed by using the thermal resistance network analysis method. The variation laws of performance parameters such as cooling space temperature, cooling coefficient and cooling capacity with time were obtained. The heating element power, working current, cooling water flow rate and filling coefficient were changed respectively. The changing laws of the minimum cooling temperature and the cooling coefficient under different working conditions were compared and analyzed. The transient characteristics of the working parameters of the thermoelectric cooler were obtained. A test platform for a water-cooled thermoelectric cooler was constructed. The transient characteristic experiment of thermoelectric cooler in confined space was developed. Results showed that the simulation temperature drop was 8.96, 8.33 and 6.94 K respectively when the heating element power was 0.95 W, 4.85 W and 13.3 W. The experimentally measured temperature drop was 6.75, 5.63 and 4.0 K, respectively. The temperature trend of experiment and simulation was consistent. The experimental results verified the computational model.



Key wordsthermoelectric cooling      transient characteristic      cooling temperature      confined space      heating element     
Received: 11 April 2022      Published: 17 January 2023
CLC:  TB 66  
Fund:  国家自然科学基金资助项目(11974429);海军工程大学自主研发计划资助项目(425317T01C)
Cite this article:

Fan-kai MENG,Chen-xin XU,Yue-tong SUN. Transient characteristic of thermoelectric cooler with heating element in confined space. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 55-62.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.006     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/55


含发热元件密闭空间热电制冷器瞬态特性

为了研究密闭空间中发热元件对热电制冷器瞬态特性的影响,基于有限时间热力学理论,建立工作在含发热元件制冷空间中的热电制冷器计算模型. 采用热阻网络分析方法,分析不同工况下关键参数对热电制冷器瞬态特性的影响,得到制冷空间温度、制冷系数、制冷量等性能参数随时间的变化规律. 分别改变发热元件功率、工作电流、冷却水流速和填充系数,对比分析不同工况下的最低制冷温度和制冷系数变化,得到热电制冷器工作参数的瞬态特性. 搭建水冷式热电制冷器的测试平台,开展密闭空间热电制冷器的瞬态特性测量实验. 结果表明,当发热元件功率分别为0.95、4.85和13.3 W时,仿真计算温降分别为8.96、8.33和6.94 K,实验测得温降分别为6.75、5.63和4.00 K,温度变化趋势一致,验证了计算模型.


关键词: 热电制冷,  瞬态特性,  制冷温度,  密闭空间,  发热元件 
Fig.1 Schematic diagram of cooling space and TEC
Fig.2 Thermal resistance network of thermoelectric cooler
α/(10?4 V·K?1) λ/(W·m?1·K?1) μ/(10?4 V·K?1) σ/(10?4 m·Ω?1) A/mm2
4.241 8 1.647 4 1.008 9 9.038 1 1.612 9
Tab.1 Physical properties and geometry parameters of thermoelectric modules
Fig.3 Cooling space temperature versus time
Fig.4 Cooling capacity versus time
Fig.5 Temperature of junction versus time
Fig.6 COP versus time
Fig.7 Minimum cooling temperature versus input current
Fig.8 COP versus input current
Fig.9 Minimum cooling temperature versus water velocity
Fig.10 COP versus water velocity
Fig.11 Minimum cooling temperature versus filling factor
Fig.12 COP versus filling factor
Fig.13 Cooling capacity versus filling factor
Fig.14 Structural diagram of experimental device of water-cooled thermoelectric cooler in confined space
Fig.15 Experimental device of water-cooled thermoelectric cooler in confined space
Fig.16 Cooling space temperature versus time
[1]   POURKIAEI S M, AHMADI M H, SADEGHZADEH M, et al Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials[J]. Energy, 2019, 186: 115849
doi: 10.1016/j.energy.2019.07.179
[2]   NOZARIASBMARZ A, DYCUS J H, CABRAL M J, et al Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials[J]. Applied Energy, 2021, 283 (C): 116211
[3]   黄露露, 张建, 孔源, 等 黄铜矿Cu(1–X)NiXGaTe2热电输运性质的优化 [J]. 物理学报, 2021, 70 (20): 246- 254
HUANG Lu-lu, ZHANG Jian, KONG Yuan, et al Optimization of thermoelectric transport performance of nickel-doped CuGaTe2[J]. Acta Physica Sinica, 2021, 70 (20): 246- 254
[4]   吉晓华, 赵新兵 纳米La-Bi-Te热电材料的溶剂热合成及其表征[J]. 浙江大学学报: 工学版, 2004, 38 (8): 951- 954
JI Xiao-hua, ZHAO Xin-bing Solvothermal synthesis and characterization of nano-structured La-Bi-Te thermoelectric materials[J]. Journal of Zhejiang University: Engineering Science, 2004, 38 (8): 951- 954
[5]   詹若男, 狄琛, 耿志明, 等 若干新型热电材料的热输运调控及热逻辑器件[J]. 硅酸盐学报, 2022, 50 (2): 307- 320
ZHAN Ruo-nan, DI Chen, GENG Zhi-ming, et al Thermal transport engineering of several emerging thermoelectric materials and thermal logic devices[J]. Journal of the Chinese Ceramic Society, 2022, 50 (2): 307- 320
[6]   孟凡凯, 陈赵军, 江帆, 等. 制备工艺对新型热电材料制冷性能的影响 [J]. 半导体光电, 2021, 42(6): 844-848.
MENG Fan-kai, CHEN Zhao-jun, JIANG Fan, et al. Effect of preparation process on properties of new semiconductor thermoelectric materials [J] Semiconductor Optoelectronics, 2021, 42(6): 844-848.
[7]   陈林根, 孟凡凯, 戈延林, 等 半导体热电装置的热力学研究进展[J]. 机械工程学报, 2013, 49 (24): 144- 154
CHEN Lin-gen, MENG Fan-kai, GE Yan-lin, et al Progress in thermodynamic studies for semiconductor thermoelectric devices[J]. Journal of Mechanical Engineering, 2013, 49 (24): 144- 154
doi: 10.3901/JME.2013.24.144
[8]   罗清海, 佘丽丽, 米冰洁 无量纲优值对热电制冷系统性能影响分析[J]. 半导体光电, 2014, 35 (6): 1030- 1034
LUO Qing-hai, SHE Li-li, MI Bing-jie Impact of dimensionless merit figure on thermoelectric refrigerating system[J]. Semiconductor Optoelectronics, 2014, 35 (6): 1030- 1034
doi: 10.16818/j.issn1001-5868.2014.06.019
[9]   张爱兵, 闫文凯, 庞丹丹, 等 热电偶臂构型尺寸对环形热电发电器性能的影响[J]. 浙江大学学报: 工学版, 2020, 54 (5): 947- 953
ZHANG Ai-bing, YAN Wen-kai, PANG Dan-dan, et al Effect of configuration size of thermoelectric couple on performance of annular thermoelectric generator[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (5): 947- 953
[10]   江帆, 孟凡凯, 陈林根, 等 变温热源小型热电冷水机结构设计与性能分析[J]. 工程热物理学报, 2020, 41 (7): 1573- 1578
JIANG Fan, MENG Fan-kai, CHEN Lin-gen, et al Structural design and performance analysis of a small thermoelectric chiller with variable temperature heat reservoirs[J]. Journal of Engineering Thermophysics, 2020, 41 (7): 1573- 1578
[11]   孟凡凯, 陈林根, 戈延林, 等 单级多单元热电制冷机制冷率优化[J]. 工程热物理学报, 2012, 33 (12): 2025- 2029
MENG Fan-kai, CHEN Lin-gen, GE Yan-lin, et al Cooling load optimization of a signle-stage multi-element thermoelectric refrigerator[J]. Journal of Engineering Thermophysics, 2012, 33 (12): 2025- 2029
[12]   JIANG F, MENG F K, CHEN L G, et al Thermodynamic analysis and experimental research of water-cooled small space thermoelectric air-conditioner[J]. Journal of Thermal Science, 2022, 31 (2): 390- 406
doi: 10.1007/s11630-022-1575-z
[13]   孟凡凯, 陈赵军, 徐辰欣 热管式半导体热电冷水机参数影响分析与性能优化[J]. 半导体光电, 2021, 42 (5): 704- 709
MENG Fan-kai, CHEN Zhao-jun, XU Chen-xin Analysis on parameters and performance optimization of heat pipe-cooled thermoelectric water-chiller[J]. Semiconductor Optoelectronics, 2021, 42 (5): 704- 709
doi: 10.16818/j.issn1001-5868.2021072101
[14]   高燕维. 热电制冷器瞬态性能强化的多参数优化设计 [D]. 北京: 华北电力大学(北京), 2018.
GAO Yan-wei. Enhancement of transient performance for thermoelectric cooler via multi-parameter optimization[D]. Beijing: North China Electric Power University (Beijing), 2018.
[15]   刘和锋. 脉冲电压下热电制冷器瞬态过冷特性的研究 [D]. 重庆: 重庆大学, 2017.
LIU He-feng. An study on transient supercooling characteristic of thermoelectric cooler under a pulse voltage [D]. Chongqing: Chongqing University, 2017.
[16]   朱庆山. 高超声速飞机用热电制冷系统的设计与特性模拟研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020.
ZHU Qing-shan. Design and characteristic simulation of thermoelectric cooler system for hypersonic aircraft [D]. Harbin: Harbin Engineering University, 2020.
[17]   HU H M, GE T S, DAI Y J, et al Experimental study on water-cooled thermoelectric cooler for Cpu under severe environment[J]. International Journal of Refrigeration, 2016, 62 (6): 30- 38
[18]   牛甜甜, 张恒运, 蒋乐 基于热电制冷的电池模组热特性试验研究[J]. 热能动力工程, 2018, 33 (9): 126- 131
NIU Tian-tian, ZHANG Heng-yun, JIANG Le Experimental study om thermal characteristics of cooling based battery module[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33 (9): 126- 131
doi: 10.16146/j.cnki.rndlgc.2018.09.019
[19]   黄迎. 基于热电制冷的汽车座椅空调制冷器的设计与研究 [D]. 重庆: 重庆大学, 2019.
HUANG Ying. Design and research of automobile seat air conditioning cooler based on thermoelectric refrigeration [D]. Chongqing: Chongqing University, 2019.
[20]   CHEN C D, MAO L B, LIN T, et al Performance testing and optimization of a thermoelectric elevator car air conditioner[J]. Case Studies in Thermal Engineering, 2020, 19: 100616
doi: 10.1016/j.csite.2020.100616
No related articles found!