Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2187-2193    DOI: 10.3785/j.issn.1008-973X.2022.11.009
    
Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method
Zhen-zhong YANG(),Jia-kai WU,Jian-lun XU,Zi-dong BU,Bao-liang ZHANG,Ming-hao WANG
School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
Download: HTML     PDF(1295KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An abnormal combustion risk coefficient model was constructed based on the analytic hierarchy process (AHP) to comprehensively evaluate the abnormal combustion risk of port fuel injection (PFI) hydrogen internal combustion engine. The effects of hydrogen injection parameters on the indicator layer (abnormal combustion characteristic parameters) and the target layer (abnormal combustion risk coefficient) were investigated respectively. The results showed that by changing the hydrogen injection parameters, the maximum amount of residual hydrogen in intake port decreased by 33.4% to 41.6%. The possibility of backfire was reduced significantly. When the hydrogen injection angle was 30°?45° and the hydrogen injection flow rate was 4.36?4.96 kg/h, the in-cylinder mixture uniformity coefficient was large. The hydrogen injection parameters were favorable for organizing the combustion, but the hydrogen injection parameters could not ensure that parameters such as the incandescent area temperature were at a low level. The constructed abnormal combustion risk coefficient model could combine several characteristic parameters for effective assessment of abnormal combustion risk of hydrogen internal combustion engines. When the hydrogen injection angle was 45° and the hydrogen injection flow rate was 4.96 kg/h, all the characteristic parameters were in a reasonable range. The abnormal combustion risk coefficient decreased by 3.6% to 6.8% and the possibility of abnormal combustion was reduced.



Key wordshydrogen internal combustion engine      AHP-entropy method      hydrogen injection parameter      preignition      backfire     
Received: 08 December 2021      Published: 02 December 2022
CLC:  TK 46+3  
Fund:  中原英才计划项目(育才系列)(ZYYCYU202012112); 河南省高层次特殊人才支持“中原千人计划”领军人才项目(ZYQR201810075)
Cite this article:

Zhen-zhong YANG,Jia-kai WU,Jian-lun XU,Zi-dong BU,Bao-liang ZHANG,Ming-hao WANG. Abnormal combustion risk assessment of hydrogen internal combustion engine based on AHP-entropy method. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2187-2193.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.009     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2187


基于层次分析-熵值法的氢内燃机异常燃烧风险评估

为了综合评估进气道喷射(PFI)氢内燃机异常燃烧风险,基于层次分析法(AHP)构建了异常燃烧风险系数模型,分别探究喷氢参数对指标层(异常燃烧特征参数)及目标层(异常燃烧风险系数)的影响. 结果表明:通过改变喷氢参数,可以使进气道残余氢气量下降33.4%~41.6%,显著降低了回火的可能性. 当喷氢角度为30°~45°、喷氢流量为4.36~4.96 kg/h时,缸内混合气均匀性系数较大,有利于组织燃烧,却不能保证炽热区域温度等参数处于较低水准. 所构建的异常燃烧风险系数模型能够结合多个特征参数对氢内燃机异常燃烧(早燃及回火)风险进行有效评估. 当喷氢角度为45°、喷氢流量为4.96 kg/h时,各项特征参数均处于合理区间,异常燃烧风险系数下降了3.6%~6.8%,降低了异常燃烧的可能性.


关键词: 氢内燃机,  层次分析-熵值法,  喷氢参数,  早燃,  回火 
参数 数值
连杆长度/mm 137.0
缸径/mm 94.0
行程/mm 85.0
压缩比 9.7
最大功率/kW 30.0
最大功率转速/(r·min?1) 6 000
最大扭矩/(N·m) 51.0
Tab.1 Main engine parameters
Fig.1 3D model of hydrogen internal combustion engine
参数 数值
当量比 0.50 0.50 0.67 0.67
喷氢时刻/℃A 708 708 698 698
喷氢流量/(kg·h?1) 4.36 4.96 5.29 6.12
喷氢角度/(°) 20 30 45 60
Tab.2 Values of main experimental parameters
Fig.2 Structure of abnormal combustion risk coefficient model
Fig.3 AHP-entropy method calculation flowchart
Fig.4 Comparison of experimental and simulation cylinder pressure curves
Fig.5 Residual hydrogen amount in intake port under different hydrogen injection parameters
Fig.6 Variation of mixture uniformity coefficient with hydrogen injection flow rate
Fig.7 Variation of duration of hot area with hydrogen injection flow
Fig.8 Change of hot area temperature and cylinder temperature at end of exhaust with hydrogen injection flow
Fig.9 Variation of abnormal combustion risk coefficient with hydrogen injection parameters
[1]   ZHAO Y D, YANG J J, LI Y, et al A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future[J]. International Journal of Hydrogen Energy, 2022, 47 (2): 728- 734
doi: 10.1016/j.ijhydene.2021.10.084
[2]   杜天申, 许沧粟, 王振子, 等 氢/汽油双燃料燃烧过程中有害排放物生成机理研究[J]. 浙江大学学报: 自然科学版, 1996, 30 (1): 42- 48
DU Tian-shen, XU Cang-li, WANG Zhen-zi, et al Research on the formation mechanism of harmful emissions during the combustion of hydrogen/gasoline dual fuel[J]. Journal of Zhejiang University: Natural Science, 1996, 30 (1): 42- 48
[3]   AKAL D, ÖZTUNA S, BÜYÜKAKIN M K A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect[J]. International Journal of Hydrogen Energy, 2020, 45 (60): 35257- 35268
doi: 10.1016/j.ijhydene.2020.02.001
[4]   ZAREEI J, ROHANI A Optimization and study of performance parameters in an engine fueled with hydrogen[J]. International Journal of Hydrogen Energy, 2020, 45 (1): 322- 336
doi: 10.1016/j.ijhydene.2019.10.250
[5]   LUO Q H, SUN B G Inducing factors and frequency of combustion knock in hydrogen internal combustion engines[J]. International Journal of Hydrogen Energy, 2016, 41 (36): 16296- 16305
doi: 10.1016/j.ijhydene.2016.05.257
[6]   VERHELSF S, WALLNER T Hydrogen-fueled internal combustion engines[J]. Progress in Energy and Combustion Science, 2009, 35 (6): 490- 527
doi: 10.1016/j.pecs.2009.08.001
[7]   YANG Z Z, ZHANG F, WANG L J, et al Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine[J]. Energy, 2018, 147: 715- 728
doi: 10.1016/j.energy.2018.01.068
[8]   WANG L J, YANG Z Z, HUANG Y, et al The effect of hydrogen injection parameters on the quality of hydrogen–air mixture formation for a PFI hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2017, 42 (37): 23832- 23845
doi: 10.1016/j.ijhydene.2017.04.086
[9]   DUAN J F, LIU F S, SUN B G Backfire control and power enhance-ment of a hydrogen internal combustion engine[J]. International Journal of Hydrogen Energy, 2014, 39 (9): 4581- 4589
doi: 10.1016/j.ijhydene.2013.12.175
[10]   LI Y, GAO W Z, ZHANG P, et al Effects study of injection strategies on hydrogen-air formation and performance of hydrogen direct injection internal combustion engine[J]. International Journal of Hydrogen Energy, 2019, 44 (47): 26000- 26011
doi: 10.1016/j.ijhydene.2019.08.055
[11]   DIÉGUEZ P M, URROZ J C, SÁINZ D, et al Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration and acoustic measurements[J]. Energy Conversion and Management, 2018, 172: 67- 80
doi: 10.1016/j.enconman.2018.06.115
[12]   YANG Z Z, WANG L J, HE M L, et al Research on optimal control to resolve the contradictions between restricting abnormal combustion and improving power output in hydrogen fueled engines[J]. International Journal of Hydrogen Energy, 2012, 37 (1): 774- 82
doi: 10.1016/j.ijhydene.2011.04.062
[13]   YAN B H, GU H Y, YANG Y H, et al Theoretical models of turbulent flow in rolling motion[J]. Progress in Nuclear Energy, 2010, 52 (6): 563- 568
doi: 10.1016/j.pnucene.2010.01.009
[14]   KARANIK M, WANDERER L, GOMEZRUIZ J A, et al Reconstruction methods for AHP pairwise matrices: how reliable are they?[J]. Applied Mathematics and Computation, 2016, 279: 103- 124
doi: 10.1016/j.amc.2016.01.008
[15]   CHINTALA V, SUBRAMANIAN K A Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode[J]. Energy, 2017, 138: 197- 209
doi: 10.1016/j.energy.2017.07.068
[16]   LUO Y, ZHAO C H An overview of pre-ignition of Hydrogen engine[J]. Journal of Scientific Research and Reports, 2020, 26 (10): 1- 7
[17]   WONG Y K, KARIM G A A kinetic examination of the effects of the presence of some gaseous fuels and preignition reaction products with hydrogen in engines[J]. International Journal of Hydrogen Energy, 1999, 24 (5): 473- 478
doi: 10.1016/S0360-3199(98)00097-4
No related articles found!