Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (7): 1363-1374    DOI: 10.3785/j.issn.1008-973X.2022.07.012
    
Evaluation method and application of urban underground space networked expansion disturbance
Zhi-chun LIU1,2(),Sheng-xiang LEI3,Guo-liang LI4,Zhen-bo ZHANG1,2,*(),Zhi-nan HU1,2
1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3. China Railway Construction Limited Corporation, Beijing 100855, China
4. China Railway First Survey and Design Institute Group Limited Corporation, Xi’an 710043, China
Download: HTML     PDF(1673KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Five expansion pattern types and eighteen structure types were proposed, as well as the "four elements" of the expansion system based on the investigated cases of underground space expansion projects in order to evaluate the disturbance effect of urban underground space network extension construction. The total evaluation objective composed of four sub-objectives, including extensional structure, existing structure, stratum and surrounding environment, and six stress and displacement evaluation indexes were determined based on the analysis of the expansion disturbance conduction path and the internal working mechanism of its elements. The analytic hierarchy process (AHP) was used to construct the judgment matrix. The evaluation index weight was determined by expert scoring. Then the control value grading method was applied to determine the membership degree of the evaluation index, thereby constructing a five-level urban underground space network expansion disturbance classification evaluation standard. The application of the above evaluation method was conducted. The order of expansion disturbance degree of different expansion methods is expansion by small>vertical expansion>horizontal expansion >connected connection, and the order of expansion disturbance degree of different stratum is soft soil >loess >alluvial-diluvial strata>rock. The expansion disturbance degree will decrease significantly with the increase of the proximity distance for horizontal expansion.



Key wordsnetworked underground space      underground space expansion      expansion pattern      expansion disturbance degree      evaluation index      grading evaluation standard     
Received: 23 June 2021      Published: 26 July 2022
CLC:  TU 94  
Fund:  国家重点研发计划资助项目(2018YFC0808703);河北省高等学校科学技术研究资助项目(QN2021130);河北省教育厅青年拔尖人才资助项目(BJ2019009)
Corresponding Authors: Zhen-bo ZHANG     E-mail: liuzhch01@163.com;zhangzb@stdu.edu.cn
Cite this article:

Zhi-chun LIU,Sheng-xiang LEI,Guo-liang LI,Zhen-bo ZHANG,Zhi-nan HU. Evaluation method and application of urban underground space networked expansion disturbance. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1363-1374.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.07.012     OR     https://www.zjujournals.com/eng/Y2022/V56/I7/1363


城市地下空间网络化拓建扰动评价方法及应用

为了评价城市地下空间网络化拓建施工扰动效应,基于地下空间拓建工程案例调研,提出5种网络化拓建模式和18种结构类型以及拓建体系构成的“四要素”. 在拓建扰动传导路径及构成要素内在工作机制分析的基础上,确定拓建结构、既有结构、地层和周边环境4个子目标构成的拓建扰动度总评价目标及应力、位移6个评价指标. 采用层次分析法(AHP)构造判断矩阵,通过专家打分法确定评价指标权重,根据评价指标控制值分级法确定评价指标的隶属度,构建按5级划分的城市地下空间网络化拓建扰动分级评价标准. 通过评价方法应用,得到不同拓建模式的拓建扰动度排序为以小扩大>竖向增层>近接增建>连通接驳,不同地层的拓建扰动度排序为软土地层>黄土地层>冲洪积地层>岩石地层;近距增建时,拓建扰动度随着近接距离的增大而显著减小.


关键词: 网络化地下空间,  地下空间拓建,  拓建模式,  拓建扰动度,  评价指标,  分级评价标准 
Fig.1 Schematic diagram of networked underground space
Fig.2 Case statistics of underground space expansion
Fig.3 Interaction principle of extension system factors
Fig.4 Internal working mechanism of expansion structure
Fig.5 Internal working mechanism of existing structure
Fig.6 Internal working mechanism of stratum
Fig.7 Internal working mechanism of surrounding environment
统计项目 评价指标
K1a K1b K2a K2b K3 K4
最大值 3 3 6 6 2 3
最小值 1 1 4 3 1 1
平均值 2.20 2.25 4.85 4.90 1.05 2.15
Tab.1 Expert scoring value
等级 K1a K1b K2a K2b/10?4 K3/10?2 K4/10?3
1 0~0.2 0~0.2 0~0.2 0~0.8 0~0.4 0~0.4
2 0.2~0.4 0.2~0.4 0.2~0.4 0.8~1.6 0.4~0.8 0.4~0.8
3 0.4~0.6 0.4~0.6 0.4~0.6 1.6~2.4 0.8~1.2 0.8~1.2
4 0.6~0.8 0.6~0.8 0.6~0.8 2.4~3.2 1.2~1.6 1.2~1.6
5 0.8~1.0 0.8~1.0 0.8~1.0 3.2~4.0 1.6~2.0 1.6~2.0
6 ≥1.0 ≥1.0 ≥1.0 ≥4.0 ≥2.0 ≥2.0
Tab.2 Value range classification of each evaluation index
构成
要素
评价
指标
P Q
1级 2级 3级 4级 5级 6级
既有结构 K1a 0.273 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0
既有结构 K1b 0.273 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0
拓建结构 K2a 0.131 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0
拓建结构 K2b 0.131 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0
地层 K3 0.061 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0
周边环境 K4 0.131 0~0.2 0.2~0.4 0.4~0.6 0.6~0.8 0.8~1.0 1.0
Tab.3 Weight and affiliation degree of evaluation index
拓建影响等级 拓建影响程度 U/% 工作状态
既有结构 新建结构 地层条件 周边环境
极严重 80~100 拆除重构或结构开裂,影响正常使用 结构劣化,耐久性降低 地层损失率大,地层参数显著降低 影响
显著
严重 60~80 结构劣化,
耐久性降低
发生较显著位移和应力 地层损失率较大,地层参数降低 影响大
中等 35~60 发生较显著位移和应力变化 正常使用 地层
损失率小
影响
较大
轻微 10~35 正常使用 状态良好 正常状态 影响小
极轻微 0~10 状态良好 状态良好 正常状态 影响极小
Tab.4 Evaluation standard of urban underground space network disturbance
基本类型 亚级类型 计算模型图 基本情况
近接增建 近距增建 既有车站侧向新建基坑:既有车站为双层三跨结构,22.9 m×14.6 m(宽×高),覆土埋深为
5.0 m;车站与基坑净距为8.0 m,地下连续墙深为25 m,基坑深16 m,宽20 m;分层开挖,设4道钢管横撑
近接增建 密贴增建 既有车站侧向新建基坑:车站与基坑净距为0 m;其余条件同近距增建模型
连通接驳 水平开口连通 既有车站侧墙开口:既有车站宽为21.5 m,高为12.7 m;侧墙开口尺寸为6 m×4.35 m(宽×高);先两边后中间分部开挖,暗柱和顶梁支护. 车站宽为21.5 m,高为12.7 m,车站覆土厚度为7.0 m
连通接驳 垂直开口连通 既有车站顶板开口:既有车站宽为21.5 m,高为12.7 m;顶板开口尺寸为6 m×4.35 m(宽×高);先两边后中间分部开挖,圈梁支护. 车站尺寸宽为21.5 m,高为12.7 m,车站覆土厚度为7.0 m
连通接驳 通道连通 既有车站和换乘厅连通:既有车站宽为21.5 m,高为12.7 m,车站覆土厚度为7.0 m;既有换乘厅尺寸为14.9 m×8.9 m(宽×高);新建通道尺寸为7 m×3.7 m(宽×高),长度为9 m;采用CRD法
开挖
竖向增层 原位增建 负一层地下室增建负二层地下室:地面90 kPa楼房荷载作用在墙、柱上,既有结构柱直径为
0.8 m,间距为6 m×6 m;在既有柱两侧布置2根直径为0.4 m的钢管混凝土托换桩,增建负二层地下室尺寸为26.5 m× 20.5 m×4.5 m(长×宽×高);先上后下、先中间后周边分层、分块开挖
竖向增层 近距上跨 既有车站上方新建2条并行隧道:既有车站宽为21.5 m,高为12.7 m,既有车站与新建隧道的净距为5.0 m;新建两并行隧道为标准区间断面,单洞宽10.3 m,高10.2 m,覆土埋深为5.0 m;采用台阶法开挖
竖向增层 密贴上跨 既有车站上方新建基坑:既有车站宽为21.5 m,高为12.7 m,埋深为18.8 m,既有车站与新建基坑的净距为0;新建基坑尺寸为20 m×18.8 m(宽×深),地下连续墙厚为1.0 m;分层开挖,设4道钢管横撑
竖向增层 近距下穿 既有车站下方新建两并行隧道:既有车站宽为21.5 m,高为12.7 m,埋深为4.0 m,既有车站与新建隧道的净距为5.0 m;新建两并行隧道为标准区间断面单洞宽10.3 m,高10.2 m;采用台阶法开挖
竖向增层 密贴下穿 既有车站下方新建两并行隧道:既有车站宽为21.5 m,高为12.7 m,埋深为4.0 m,既有车站与新建隧道的净距为0 m;新建两并行隧道为矩形结构10 m×10 m;采用台阶法开挖
以小扩大 单侧原位扩建 既有两车道市政隧道扩建三车道:既有隧道尺寸为11.1 m×8.6 m(宽×高),覆土埋深为10.0 m;扩建隧道尺寸为18.6 m×12.3 m(宽×高);采用单侧CRD法扩挖
以小扩大 双侧原位扩建 既有两车道市政隧道扩建三车道:既有隧道条件同上;扩建隧道尺寸为18.6 m×12.3 m(宽×
高);采用双侧CRD法扩挖
以小扩大 单洞扩建三连拱车站 既有大盾构隧道扩建岛式车站:既有盾构隧道直径为10.0 m,覆土埋深为15.0 m;两侧新建圆形隧道直径为5.6 m,增加立柱尺寸为0.6 m×1.2 m,间距为2.4 m;采用台阶法开挖
以小扩大 双洞扩建三连拱车站 既有两并行标准盾构隧道扩建岛式车站:既有盾构隧道直径为6.0 m;新建隧道尺寸为8.5 m×
9.0 m(宽×高),覆土埋深为15.0 m,增加立柱尺寸为0.6 m× 1.2 m,间距为2.4 m;采用台阶法
开挖
以小扩大 双洞连通增建车站 既有两并行标准盾构隧道扩建分离式岛式车站:两侧盾构隧道直径为6.0 m;新建隧道尺寸为10.5 m×9.0 m(宽×高),覆土埋深为15.0 m,新建通道尺寸为3 m×3 m×2.68 m(宽×高×长);采用台阶法开挖
Tab.5 Finite element models of different expansion methods
拓建模式 结构类型 评价指标
K1a K1b K2a K2b K3 K4
近接增建 密贴增建 0.11 1.98 0.28 0.54 0.42 0.84
近接增建 近距增建 0.07 0.30 0.32 0.35 0.26 0.81
连通接驳 侧墙开口连通 0.26 0.50 0.13 0.72 0.00 0.00
连通接驳 垂直开口连通 0.10 0.50 0.23 0.58 0.00 0.00
连通接驳 通道连通 0.14 0.45 0.32 0.99 0.30 0.90
竖向增层 原位增建 0.65 3.85 0.78 0.96 0.41 0.80
竖向增层 近距上跨 0.68 1.86 0.78 0.77 0.16 0.58
竖向增层 密贴上跨 0.61 2.03 0.99 1.77 0.37 0.58
竖向增层 近距下穿 0.90 1.50 1.07 0.54 0.69 0.28
竖向增层 密贴下穿 0.87 2.15 1.30 0.69 0.45 3.32
以小扩大 单侧原位扩建 1.27 10.40 1.17 0.60 2.80 1.40
以小扩大 双侧原位扩建 1.14 3.56 0.15 0.63 4.49 1.50
以小扩大 单洞扩建三连拱车站 1.12 2.85 0.61 0.55 4.73 0.56
以小扩大 双洞扩建三连拱车站 1.34 3.21 0.72 0.96 5.94 1.92
以小扩大 双洞连通增建车站 0.67 7.00 0.25 0.58 3.76 0.66
Tab.6 Calculation value of evaluation index K for different extension models
拓建模式 结构类型 隶属度 U/%
Q1 Q2 Q3 Q4 Q5 Q6
近接增建 密贴增建 0.11 0.50 0.28 0.54 0.21 0.42 34.1
近接增建 近距增建 0.07 0.08 0.32 0.35 0.13 0.41 18.8
连通接驳 侧墙开口连通 0.26 0.13 0.13 0.72 0.00 0.00 21.6
连通接驳 垂直开口连通 0.10 0.13 0.23 0.58 0.00 0.00 16.6
连通接驳 通道连通 0.14 0.11 0.32 0.99 0.15 0.45 30.9
竖向增层 原位增建 0.65 0.96 0.78 0.96 0.20 0.40 73.3
竖向增层 近距上跨 0.68 0.47 0.78 0.77 0.08 0.29 55.7
竖向增层 密贴上跨 0.61 0.51 0.99 1.00 0.19 0.29 61.5
竖向增层 近距下穿 0.90 0.38 1.00 0.54 0.34 0.14 58.9
竖向增层 密贴下穿 0.87 0.54 1.00 0.69 0.22 1.00 75.2
以小扩大 单侧原位扩建 1.00 1.00 1.00 0.60 1.00 0.70 90.8
以小扩大 双侧原位扩建 1.00 0.89 0.15 0.63 1.00 0.75 77.7
以小扩大 单洞扩建三连拱车站 1.00 0.71 0.61 0.55 1.00 0.28 71.7
以小扩大 双洞扩建三连拱车站 1.00 0.80 0.72 0.96 1.00 0.96 89.9
以小扩大 双洞连通增建车站 0.67 1.00 0.25 0.58 1.00 0.33 66.8
Tab.7 Calculation value of affiliation degree Q and expansion mechanical effect U for different extension models
Fig.8 Comparison of disturbance degree of different expansion methods
地层 E/MPa ν γ/(kN·m?3) c/kPa φ/(°)
冲洪积 60 0.27 20 27 15
黄土 30 0.3 18 22 24
软土 20 0.38 17 11 12
岩石 600 0.4 21 100 25
Tab.8 Parameters of typical stratum
地层 U/% 扰动等级 扰动程度
岩石 7.6 极轻微
冲洪积 18.8 轻微
黄土 21.6 轻微
软土 43.1 中等
Tab.9 Calculation value of extension disturbance degree for typical stratum conditions
Fig.9 Curve of expansion mechanical effect and relatively adjacent distance
[1]   钱七虎 科学利用城市地下空间, 建设和谐宜居、美丽城市[J]. 隧道与地下工程灾害防治, 2019, 1 (1): 1- 7
QIAN Qi-hu Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1 (1): 1- 7
[2]   中国工程院战略咨询中心, 中国岩石力学与工程学会地下空间分会, 中国城市规划学会. 中国城市地下空间发展蓝皮书: 公共版 [R]. 北京: 中国工程院战略资深中心, 中国岩石力学与工程学会地下空间分会, 中国城市规划学会, 2020.
Center for Strategic Consulting of Chinese Academy of Engineering, Sub-society for Underground Space of Chinese Society of Rock Mechanics and Engineering, Chinese Society of Urban Planning. Blue book of urban underground space development in China: Public edition [R]. Beijing: Center for Strategic Consulting of Chinese Academy of Engineering, Sub-society for Underground Space of Chinese Society of Rock Mechanics and Engineering, Chinese Society of Urban Planning, 2020.
[3]   雷升祥, 申艳军, 肖清华, 等 城市地下空间开发利用现状及未来发展理念[J]. 地下空间与工程学报, 2019, 15 (4): 965- 979
LEI Sheng-xiang, SHEN Yan-jun, XIAO Qing-hua, et al Present situations of development and utilization for underground space in cities and new viewpoints for future development[J]. Chinese Journal of Underground Space and Engineering, 2019, 15 (4): 965- 979
[4]   郭典塔, 周翠英 基坑开挖对近接地铁车站的影响规律研究[J]. 现代隧道技术, 2015, 52 (1): 156- 162
GUO Dian-ta, ZHOU Cui-ying Influence of foundation pit excavation approaching a metro station[J]. Modern Tunnelling Technology, 2015, 52 (1): 156- 162
[5]   章慧健, 郭蕾, 郑余朝, 等 城市隧道近接建筑物施工的影响与对策分析[J]. 铁道工程学报, 2016, 33 (4): 95- 100
ZHANG Hui-jian, GUO Lei, ZHENG Yu-chao, et al Influence and countermeasure analysis on urban tunneling near buildings[J]. Journal of Railway Engineering Society, 2016, 33 (4): 95- 100
doi: 10.3969/j.issn.1006-2106.2016.04.020
[6]   郑余朝, 施博文, 孙克国, 等 基坑近接既有地铁盾构隧道施工影响分区方法[J]. 西南交通大学学报, 2017, 52 (5): 910- 918
ZHENG Yu-chao, SHI Bo-wen, SUN Ke-guo, et al Impact of partition method in pit construction adjacent to existing metro shield tunnel[J]. Journal of Southwest Jiaotong University, 2017, 52 (5): 910- 918
doi: 10.3969/j.issn.0258-2724.2017.05.010
[7]   HASHIGUCHI H, KAWAGISHI Y, ARAI Y, et al. The creation of a large-scale underground concourse connecting a sky scraper complex and subway station; redevelopment plans in Ginza and Hibiya districts, Tokyo, one of Japan's leading commercial areas [C]// Proceedings of the World Tunnel Congress 2017 – Surface Challenges – Underground Solutions. Bergen: International Tunnelling Association, 2017.
[8]   MOHAMED N H, FABRICE E, ABDERAHIM B Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls[J]. Tunnelling and Underground Space Technology, 2019, 83 (1): 153- 164
[9]   孙钧, 温海洋 人工智能科学在软土地下工程施工变形预测与控制中的应用实践: 理论基础、方法实施、精细化智能管理(示例)[J]. 隧道建设(中英文), 2020, 40 (1): 1- 8
SUN Jun, WEN Hai-yang Application of artificial intelligence science to construction deformation prediction and control of underground engineering in soft soil: cases study on theoretical foundation, method application and fine intelligent technical management[J]. Tunnel Construction, 2020, 40 (1): 1- 8
[10]   王志杰, 周飞聪, 周平, 等 基于强近接大型基坑单侧开挖卸载既有车站变形理论研究[J]. 岩石力学与工程学报, 2020, 39 (10): 2131- 2147
WANG Zhi-jie, ZHOU Fei-cong, ZHOU Ping, et al Research on deformation theory of existing stations based on single side excavation and unloading of large foundation pits with strong close connection[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (10): 2131- 2147
[11]   丁智, 张霄, 梁发云, 等 软土基坑开挖对邻近既有隧道影响研究及展望[J]. 中国公路学报, 2021, 34 (3): 50- 70
DING Zhi, ZHANG Xiao, LIANG Fa-yun, et al Research and prospects regarding the effect of foundation pit excavation on an adjacent existing tunnel in soft soil[J]. China Journal of Highway and Transport, 2021, 34 (3): 50- 70
doi: 10.3969/j.issn.1001-7372.2021.03.002
[12]   BOBERT A Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127 (12): 1258- 1266
doi: 10.1061/(ASCE)0733-9399(2001)127:12(1258)
[13]   李围, 何川 盾构隧道近接下穿地下大型结构施工影响研究[J]. 岩土工程学报, 2006, (10): 1277- 1282
LI Wei, HE Chuan Study on construction influence of shield tunnels traversing adjacently under underground large-scale structure[J]. Chinese Journal of Geotechnical Engineering, 2006, (10): 1277- 1282
doi: 10.3321/j.issn:1000-4548.2006.10.019
[14]   何川, 苏宗贤, 曾东洋 地铁盾构隧道重叠下穿施工对上方已建隧道的影响[J]. 土木工程学报, 2008, (3): 91- 98
HE Chuan, SU Zong-xian, ZENG Dong-yang Influence of metro shield tunneling on existing tunnel directly above[J]. China Civil Engineering Journal, 2008, (3): 91- 98
doi: 10.3321/j.issn:1000-131X.2008.03.015
[15]   谢雄耀, 牛俊涛, 杨国伟, 等 重叠隧道盾构施工对先建隧道影响模型试验研究[J]. 岩石力学与工程学报, 2013, 32 (10): 2061- 2069
XIE Xiong-yao, NIU Jun-tao, YANG Guo-wei, et al Model test for effects of construction of shield tunnelling in overlapping tunnels on existing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (10): 2061- 2069
[16]   王剑晨, 张顶立, 张成平, 等 北京地区浅埋暗挖法下穿施工既有隧道变形特点及预测[J]. 岩石力学与工程学报, 2014, 33 (5): 947- 956
WANG Jian-chen, ZHANG Ding-li, ZHANG Cheng-ping, et al Deformation characteristics of existing tunnels induced by excavation of new shallow tunnel in Beijing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (5): 947- 956
[17]   伍程杰, 龚晓南, 房凯, 等 增层开挖对既有建筑物桩基承载刚度影响分析[J]. 岩石力学与工程学报, 2014, 33 (8): 1526- 1535
WU Cheng-jie, GONG Xiao-nan, FANG Kai, et al Effect of excavation beneath existing buildings on loading stiffness of piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (8): 1526- 1535
[18]   李倩倩, 张顶立, 房倩, 等 浅埋暗挖法下穿既有盾构隧道的变形特性分析[J]. 岩石力学与工程学报, 2014, 33 (Supple.2): 3911- 3918
LI Qian-qian, ZHANG Ding-li, FANG Qian, et al Study of deformation characteristics of tunnels traversing adjacently under shield tunnels by shallow tunneling method[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Supple.2): 3911- 3918
[19]   PARKA Y H, KIM J P, CHO K H Stability analysis of subway box structure supported by modified underpinning method[J]. Tunnelling and Underground Space Technology, 2015, (50): 199- 208
[20]   张旭, 张成平, 韩凯航, 等 隧道下穿既有地铁车站施工结构沉降控制案例研究[J]. 岩土工程学报, 2017, 39 (4): 759- 766
ZHANG Xu, ZHANG Cheng-ping, HAN Kai-hang, et al Case study of control technology of structural settlements due to tunnelling beneath a subway station[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (4): 759- 766
doi: 10.11779/CJGE201704023
[21]   SCHNEIDER G R, MOLINA A G-F, MENDIOLA V T, et al Innovative solutions for intersection of TBM tunnel and station in Riyadh Line 5 metro[J]. Tunnelling and Underground Space Technology, 2018, (80): 26- 37
[22]   SAKATA S, OKANOYA K, ARAI Y, et al. Constructing ground struts by means of ground improvement underneath existing box elements in large-scale renovation of a subway station under operation constructed by the Caisson method [C]//Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art. Boca Raton: CRC Press, 2019: 1509-1517.
[23]   张振波, 刘志春, 郑凯, 等 PBA新建车站密贴下穿既有车站导洞施工工序优化研究[J]. 建筑结构, 2020, 50 (Supple.2): 882- 887
ZHANG Zhen-bo, LIU Zhi-chun, ZHENG Kai, et al Optimization construction process of PBA new station pilot tunnels under the existing station[J]. Building Structure, 2020, 50 (Supple.2): 882- 887
[24]   陈照, 刘志春, 胡指南, 等 地下增层拓建施工参数影响数值分析[J]. 国防交通工程与技术, 2021, 19 (1): 22- 25
CHEN Zhao, LIU Zhi-chun, HU Zhi-nan, et al A numerical analysis of the effect of the underground storey-adding construction parameters on existing structures[J]. Traffic Engineering and Technology for National Defence, 2021, 19 (1): 22- 25
[25]   胡居义, 陈礼彪, 黄伦海 2车道隧道扩建成4车道隧道扩建形式研究[J]. 公路交通技术, 2010, (5): 93- 97
HU Ju-yi, CHEN Li-biao, HUANG Lun-hai Research on expansion modes of two-lane to four-lane tunnels[J]. Technology of Highway and Transport, 2010, (5): 93- 97
doi: 10.3969/j.issn.1009-6477.2010.05.023
[26]   疏义广, 蒋树屏, 雷明林 扩建小净距公路隧道施工力学分析[J]. 重庆交通大学学报:自然科学版, 2012, 31 (2): 214- 217
SHU Yi-guang, JIANG Shu-ping, LEI Ming-lin Construction mechanical analysis on extension of small interval tunnel[J]. Journal of Chongqing Jiaotong University: Natural Science, 2012, 31 (2): 214- 217
[27]   张俊儒, 吴洁, 严丛文, 等 中国四车道及以上超大断面公路隧道修建技术的发展[J]. 中国公路学报, 2020, 33 (1): 14- 31
ZHANG Jun-ru, WU Jie, YAN Cong-wen, et al Construction technology of super-large section of highway tunnels with four or more lanes in China[J]. China Journal of Highway and Transport, 2020, 33 (1): 14- 31
doi: 10.3969/j.issn.1001-7372.2020.01.002
[28]   贾剑, 石景山, 周顺华, 等 盾构隧道扩建地铁车站地表沉降预测及分析[J]. 岩石力学与工程学报, 2013, 32 (Supple.1): 2883- 2890
JIA Jian, SHI Jing-shan, ZHOU Shun-hua, et al Forecast and analysis of surface settlement of Metro station constructed by shield tunnel expanding[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Supple.1): 2883- 2890
[29]   李宏安 大直径盾构建造地铁区间及扩挖车站工程实践及应用前景分析[J]. 现代隧道技术, 2015, 52 (5): 16- 23
LI Hong-an Application and prospect analysis of large- diameter shield-driven tunnels combined with enlarged metro stations[J]. Modern Tunnelling Technology, 2015, 52 (5): 16- 23
[30]   乐贵平, 黄齐武, 李宏安 大直径土压平衡盾构及其车站PBA法扩挖技术[J]. 隧道建设, 2016, 36 (2): 212- 220
LE Gui-ping, HUANG Qi-wu, LI Hong-an Shield tunneling technologies and PBA enlarging method: a case study on Beijing metro[J]. Tunnel Construction, 2016, 36 (2): 212- 220
doi: 10.3973/j.issn.1672-741X.2016.02.014
[31]   林攀, 刘志春, 胡指南, 等 盾构隧道拓建地铁车站施工力学特性分析[J]. 国防交通工程与技术, 2020, 18 (4): 31- 34
LIN Pan, LIU Zhi-chun, HU Zhi-nan, et al An analysis of the mechanical characteristics of the construction of expanding a metro station with a shield-drilled tunnel[J]. Traffic Engineering and Technology for National Defense, 2020, 18 (4): 31- 34
[32]   胡指南, 孟祥飞, 刘志春, 等 双线盾构扩建地铁车站的插管冻结法及施工力学特性研究[J]. 隧道建设, 2021, 41 (4): 579- 587
HU Zhi-nan, MENG Xiang-fei, LIU Zhi-chun, et al Insert-tube freezing method for expanding construction of metro station based on double-line shield tunnel and its mechanical characteristics[J]. Tunnel Construction, 2021, 41 (4): 579- 587
doi: 10.3973/j.issn.2096-4498.2021.04.007
[33]   李术才, 周宗青, 李利平, 等 岩溶隧道突水风险评价理论与方法及工程应用[J]. 岩石力学与工程学报, 2013, 32 (9): 1858- 1867
LI Shu-cai, ZHOU Zong-qing, LI Li-ping, et al Risk evaluation theory and method of water inrush in karst tunnels and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (9): 1858- 1867
doi: 10.3969/j.issn.1000-6915.2013.09.018
[34]   刘志春, 王梦恕 石板山隧道与地下水环境相互作用评价技术研究[J]. 土木工程学报, 2015, 48 (Supple.1): 321- 325
LIU Zhi-chun, WANG Meng-shu Research on evaluation technique of interaction between Shibanshan tunnel and groundwater environment[J]. China Civil Engineering Journal, 2015, 48 (Supple.1): 321- 325
[35]   王志杰, 李振, 蒋新政, 等 新建隧道双侧近接既有隧道施工风险评价研究[J]. 铁道工程学报, 2020, 37 (5): 47- 53
WANG Zhi-jie, LI Zhen, JIANG Xin-zheng, et al Research on the construction risk assessment of new tunnels close to existing tunnel on both sides[J]. Journal of Railway Engineering Society, 2020, 37 (5): 47- 53
doi: 10.3969/j.issn.1006-2106.2020.05.009
[36]   TONON F, ASCE M Methods for enlarging transportation tunnels while keeping tunnels fully operational[J]. Practice Periodical on Structural Design and Construction, 2010, (15): 248- 271
[37]   MOHAMMAD H SADAGHIANI, DADIZADEH S. Study on the effect of a new construction method for a large span metro underground station in Tabriz-Iran[J]. Tunnelling and Underground Space Technology, 2010, (25): 63- 69
[38]   LINDBLOML U, GREEN L, MANELL G Sweden’s National Library goes underground[J]. Tunnelling and Underground Space Technology, 1995, 10 (2): 149- 154
doi: 10.1016/0886-7798(95)00002-G
[39]   RESTELLI A B, ROVETTO E, CAFFARO P. The underpass of the two M5 subway lines at cross point with the four underground lines of Domodossola railway station [C]// Proceedings of the World Tunnel Congress 2017-Surface Challenges-Underground Solutions. Bergen: International Tunnelling Association, 2017.
[40]   AKAGI H. Amazing underground construction technology in Japan [C]// Geotechnical Aspects of Underground Construction in Soft Ground. Boca Raton: CRC Press, 2017: 3-19.
[41]   BRUGA M, BELLONE A, PIANGATELLI M A. The construction of the underground car park beneath the “San Giusto” hill, in a very delicate urban environment in Trieste, Italy [C]// Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art. Boca Raton: CRC Press, 2019: 5030-5039.
[42]   TANAKA Y, TAKAMATSU N. Expansion of existing TBM tunnel by ground freezing method [C]// Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art. Boca Raton: CRC Press, 2019: 1589-1598.
[43]   城市轨道交通工程监测技术规范: GB 50911—2013 [S]. 北京: 中国建筑工业出版社, 2013.
[1] LIU Hai long, ZHOU Jia wei, CHEN Yun min, LI Yu chao, ZHAN Liang tong. Evaluation of municipal solid waste landfill stabilization[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2336-2342.
[2] LI Hong kun, CHEN Jian hong, SHENG De ren, LI Wei. Thermoeconomic analysis and performance evaluation of gas steam combined cycle power plant based on H&S model[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 116-122.
[3] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1287-1292.
[4] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 522-527.