Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1206-1211    DOI: 10.3785/j.issn.1008-973X.2022.06.019
    
Direct nitrogen fixation by air oxidation catalyzed based on magnetic rotating sliding arc plasma
Xing-jie LV(),Hang CHEN,Ang-jian WU*(),Xiao-dong LI
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2096KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three kinds of MoO3/Al2O3 catalysts with different mass fractions (5%, 7.5% and 10%) were prepared by impregnation method using activated alumina (γ-Al2O3) as the carrier, and they were used for the research of plasma-catalyzed air oxidation and nitrogen fixation. In order to investigate the structural differences of catalysts with different mass fractions, the physical properties of the catalysts were characterized by XRD, SEM, and TEM. It was found that the catalyst structure was stable and distributed uniformly, which was beneficial to the catalytic experiment. The prepared MoO3/Al2O3 catalyst was used to carry out a magnetically rotating gliding arc plasma-coupled catalytic air nitrogen fixation experiment, and experiment results showed that the catalyst had a promoting effect on nitrogen fixation. Under the optimal conditions, the output rate of ${{\text{NO}}_{{x}}}^{{-}}$ reached up to 1.17 mmol/min. Compared with the highest nitrogen fixation efficiency of 985 μmol/min in similar studies, it was slightly improved.



Key wordsmagnetic rotating sliding arc      MoO3/Al2O3 catalysts      plasma coupling catalysis      air oxidation nitrogen fixation      plasma activated water     
Received: 23 July 2021      Published: 30 June 2022
CLC:  TK 01+9  
Fund:  国家自然科学基金资助项目(51976191,51806193)
Corresponding Authors: Ang-jian WU     E-mail: 1293702293@qq.com;wuaj@zju.edu.cn
Cite this article:

Xing-jie LV,Hang CHEN,Ang-jian WU,Xiao-dong LI. Direct nitrogen fixation by air oxidation catalyzed based on magnetic rotating sliding arc plasma. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1206-1211.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.019     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1206


基于磁旋滑动弧等离子体催化的空气直接氧化固氮

以活性氧化铝(γ-Al2O3)为载体通过浸渍法制备不同质量分数(5%、7.5%和10%)的MoO3/Al2O3催化剂,并进行等离子体催化空气的氧化固氮研究. 为了考察不同质量分数催化剂的结构差异,分别采用XRD、SEM和TEM表征催化剂的物理性质,结果表明催化剂结构稳定、分布均匀,有利于催化实验. 利用制备的MoO3/Al2O3催化剂进行磁旋滑动弧等离子体耦合催化空气固氮实验,结果表明制备催化剂对固氮有促进作用,在最佳工况下, ${ {\text{NO}}_{{x}}}^{{-}}$的产出速率最高为1.17 mmol/min,相比同类研究中最高固氮效率 985 μmol /min有些许提升.


关键词: 磁旋滑动弧,  MoO3/Al2O3催化剂,  等离子体耦合催化,  空气氧化固氮,  等离子体活化水 
Fig.1 Magnetic rotating sliding arc coupling catalytic experiment system
Fig.2 Schematic diagram of catalytic bed layout
Fig.3 XRD patterns of MoO3/Al2O3 with different mass fractions
Fig.4 MoO3/Al2O3 SEM of 5% mass fraction
Fig.5 MoO3/Al2O3 TEM of 10% mass fraction
Fig.6  ${{\mathrm{N}\mathrm{O}}_{x}}^{-}$ concentration in plasma activated water under different experimental conditions
Fig.7 Effect of plasma coupled catalytic nitrogen fixation with different mass fractions of MoO3/Al2O3
Fig.8  ${{\mathrm{N}\mathrm{O}}_{x}}^{-}$concentration in plasma activated water and gas absorption bottle under different catalytic conditions
[1]   CHERKASOV N, IBHADON A O, FITZPATRICK P A review of the existing and alternative methods for greener nitrogen fixation[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 24- 33
doi: 10.1016/j.cep.2015.02.004
[2]   CHEN J G, CROOKS R M, SEEFELDT L C, et al Beyond fossil fuel–driven nitrogen transformations[J]. Science, 2018, 360 (6391): eaar6611
doi: 10.1126/science.aar6611
[3]   ZHANG L, JI X Q, REN X, et al Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions [J]. ACS Sustainable Chemistry and Engineering, 2018, 6: 9550- 9554
doi: 10.1021/acssuschemeng.8b01438
[4]   LI R G Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis[J]. Chinese Journal of Catalysis, 2018, 39: 1180- 1188
doi: 10.1016/S1872-2067(18)63104-3
[5]   HALBLEIB C M, LUDDEN P W Regulation of biological nitrogen fixation[J]. The Journal of Nutrition, 2000, 130 (5): 1081- 1084
doi: 10.1093/jn/130.5.1081
[6]   IWAMOTO M, AKIYAMA M, AIHARA K, et al Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2[J]. ACS Catalysis, 2017, 7 (10): 6924- 6929
doi: 10.1021/acscatal.7b01624
[7]   FRIDMAN A. Plasma Chemistry [M]. New York: Cambridge University Press, 2008: 848–857.
[8]   WANG W, PATIL B, HEIJKERS S, et al Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling[J]. ChemSusChem, 2017, 10 (10): 2145- 2157
doi: 10.1002/cssc.201700095
[9]   GALLAGHER M J, GEIGER R, POLEVICH A, et al On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas[J]. Fuel, 2010, 89 (6): 1187- 1192
doi: 10.1016/j.fuel.2009.11.039
[10]   PATIL B S, CHERKASOV N, LANG J, et al Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides [J]. Applied Catalysis B: Environmental, 2016, 194: 123- 133
doi: 10.1016/j.apcatb.2016.04.055
[11]   HAN J R, JI X Q, REN X, et al MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3[J]. Journal of Materials Chemistry A, 2018, 6 (27): 12974- 12977
doi: 10.1039/C8TA03974G
[12]   KUMAR S, SINGH A, SINGH R, et al Facile h-MoO3 synthesis for NH3 gas sensing application at moderate operating temperature [J]. Sensors and Actuators B: Chemical, 2020, 325: 128974
doi: 10.1016/j.snb.2020.128974
[13]   WU H Y, LI X, CHENG Y, et al Plasmon-driven N2 photofixation in pure water over MoO3-x nanosheets under visible to NIR excitation [J]. Journal of Materials Chemistry A, 2020, 8 (5): 2827- 2835
doi: 10.1039/C9TA13038A
[14]   MUTEL B, DESSAUX O, GOUDMAND P Energy cost improvement of the nitrogen oxides synthesis in a low pressure plasma[J]. Revue de Physique Appliquée, 1984, 19 (6): 461- 464
[15]   LU W J, LU G Z, LUO Y, et al A novel preparation method of ZnO/MCM-41 for hydrogenation of methyl benzoate[J]. Journal of Molecular Catalysis A Chemical, 2002, 188: 225- 231
doi: 10.1016/S1381-1169(02)00335-7
[16]   BARAZZOUK S, TANDON R P, HOTCHANDANI S MoO3-based sensor for NO, NO2 and CH4 detection [J]. Sensors and Actuators B: Chemical, 2006, 119 (2): 691- 694
doi: 10.1016/j.snb.2006.01.026
[17]   YANG J, LI T Y, ZHONG C S, et al Nitrogen fixation in water using air phase gliding arc plasma[J]. Journal of The Electrochemical Society, 2016, 163 (10): E288- E292
doi: 10.1149/2.0221610jes
[18]   PENG P, CHEN P, ADDY M, et al In situ plasma-assisted atmospheric nitrogen fixation using water and spray-type jet plasma[J]. Chemical Communications, 2018, 54 (23): 2886- 2889
doi: 10.1039/C8CC00697K
[19]   PENG P, SCHIAPPACASSE C, ZHOU N, et al Plasma in situ gas–liquid nitrogen fixation using concentrated high-intensity electric field[J]. Journal of Physics D: Applied Physics, 2019, 52: 494001
doi: 10.1088/1361-6463/ab3ea6
No related articles found!