Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 2002-2012    DOI: 10.3785/j.issn.1008-973X.2021.10.023
    
Full-coverage film cooling in combustor of micro gas turbine
Zi-shuo WANG(),Hao TANG*(),Yu LIU
Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: HTML     PDF(2053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The full-coverage film cooling was analyzed for the high temperature area on combustor in order to prolong the service life of the micro gas turbine combustor. The effects of arrangements and outer ring expansion film holes on the film cooling and the overall performance of combustor were compared under the actual conditions based on the test of KJ-66 micro gas turbine. Results showed that the average overall cooling efficiency of the order arrangement was lower than that of the cross arrangement in the actual micro gas turbine model, but the comprehensive cooling effect was higher. The film cooling effect was gradually improved as the outlet diameter of expansion holes increased, but the uniformity of temperature distribution at the combustor outlet was decreased. The secondary flow into the mainstream was deflected due to the influence of the cooling holes at the back of the combustor, which can improve the effects of film cooling. The full-coverage film cooling has a good cooling effect on the combustor wall under actual combustion conditions. Expansion film holes can effectively improve the film cooling effects of the combustor outer ring.



Key wordsmicro gas turbine combustor      full-coverage film cooling      expansion film hole      cooling efficiency      combustor performance     
Received: 15 December 2020      Published: 27 October 2021
CLC:  V 231  
Fund:  国家自然科学基金资助项目(91641131,51076064)
Corresponding Authors: Hao TANG     E-mail: zishuo96@163.com;hao.tang@nuaa.edu.cn
Cite this article:

Zi-shuo WANG,Hao TANG,Yu LIU. Full-coverage film cooling in combustor of micro gas turbine. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 2002-2012.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.023     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/2002


微型涡喷发动机燃烧室全覆盖气膜冷却

为了延长微型涡喷发动机燃烧室的使用寿命,针对燃烧室壁面高温区进行全覆盖气膜冷却研究. 在KJ-66微型涡喷发动机试车实验的基础上,比较实际燃烧工况下,排布方式和燃烧室外环的扩张孔对气膜冷却效果及燃烧室整体性能的影响. 结果表明,在实际微型涡喷发动机模型中,顺排的平均综合冷却效率低于叉排,但对壁面的综合降温效果优于叉排. 随着扩张孔出口直径的增大,气膜冷却效果逐渐改善,但会影响燃烧室出口温度分布的均匀性. 由于燃烧室后排冷却孔的影响,二次流射入主流会发生偏转,提升了气膜的冷却效果. 整体而言,全覆盖气膜冷却在实际燃烧工况下对燃烧室壁面有着很好的冷却作用,扩张型气膜孔能够有效改善燃烧室外环的气膜冷却效果.


关键词: 微型涡喷发动机燃烧室,  全覆盖气膜冷却,  扩张型气膜孔,  冷却效率,  燃烧室性能 
Fig.1 Comparison diagram of KJ-66 micro gas turbine real object and three-dimensional model
Fig.2 Test bench of micro gas turbine
Fig.3 Local measurement diagram of micro gas turbine
Fig.4 Computational region of original model (up) and model with film cooling holes (down)
Fig.5 Schematic diagram of film cooling holes with order and cross arrangements
Fig.6 Schematic diagram of film cooling holes with different expansion structures
模型 排布方式 D1/mm D2/mm
So 顺排 0.3 0.3
Sc 叉排 0.3 0.3
S1 顺排 0.3 0.5
S2 顺排 0.3 0.65
S3 顺排 0.3 0.8
Tab.1 Design scheme of film holes with different structures
边界 qm /(kg·s?1) pt /Pa T /K
空气进口 0.0267 3000 385
燃料进口 0.000567 N/A 300
出口 N/A 0 875
Tab.2 Inlet/outlet boundary conditions settings for 1/6 sector domain
网格编号 N h/mm ξ
1 29 855 981 0.17 0.053 2
2 16 609 928 0.21 0.053 3
3 7 212 916 0.27 0.054 1
4 5 671 429 0.30 0.055 3
Tab.3 Calculation parameters of grid convergence verification
Fig.7 Relative errors of discretization calculation
Fig.8 Locally encrypted computational domain grids
Fig.9 Comparison diagram of KJ-66 micro gas turbine experimental and simulation results
Fig.10 Temperature contour of combustor central cross section at 100 000 r/min
Fig.11 Temperature contour of combustor at 100 000 r/min
Fig.12 Average overall cooling efficiency of inner and outer ring on combustor
Fig.13 Temperature contour of film cooling holes central section with different arrangements
Fig.14 Temperature contour of outer ring with different arrangement film cooling holes
Fig.15 Temperature contour of inner ring with different arrangement film cooling holes
Fig.16 Streamlines distribution of outer ring with different arrangement film cooling holes
Fig.17 Streamlines distribution of inner ring with different arrangement film cooling holes
模型 η ξ OTDF T1 /K T2 /K
S 0.952 0.0533 0.423 1075 1021
So 0.951 0.0533 0.440 958 823
Sc 0.952 0.0536 0.466 1004 849
Tab.4 Combustor evaluation parameters of different arrangement film cooling holes models
Fig.18 Outer ring average overall film cooling efficiency of different models with expansion holes
Fig.19 Temperature contour of central section with different expansion holes on outer ring
Fig.20 Temperature contour of outer ring with different expansion holes
模型 η ξ OTDF T3/K
S1 0.951 0.0536 0.470 906
S2 0.953 0.0520 0.487 823
S3 0.949 0.0526 0.500 776
Tab.5 Combustor evaluation parameters of different expansion models
[1]   BOUKOBERINE M N, ZHOU Z, BENBOUZID M A critical review on unmanned aerial vehicles power supply and energy management: solutions, strategies, and prospects[J]. Applied Energy, 2019, 255: 113823
doi: 10.1016/j.apenergy.2019.113823
[2]   CAPATA R, MARINO L, SCIUBBA E A hybrid propulsion system for a high-endurance UAV: configuration selection, aerodynamic study, and gas turbine bench tests[J]. Journal of Unmanned Vehicle Systems, 2014, 2 (1): 16- 35
doi: 10.1139/juvs-2013-0005
[3]   FORCE USA. RPA vector: vision and enabling concepts 2013–2038 [R]. Washington D. C.: United States Air Force, 2014.
[4]   薛然然, 李凤超 微型涡轮喷气发动机发展综述[J]. 航空工程进展, 2016, 7 (4): 387- 396
XUE Ran-ran, LI Feng-chao An overview on development of micro turbojet engines[J]. Advances in Aeronautical Science and Engineering, 2016, 7 (4): 387- 396
[5]   FRANCIS O, SYBRAND J V D S, THEODOR W V B, et al An overview of micro gas turbine engine performance investigation[J]. Journal of the South African Institution of Mechanical Engineering, 2015, 31: 35- 41
[6]   CHAUDHARI K V, KULSHRESHTHA D B, CHANNIWALA S A Design and CFD simulation of annular combustion chamber with kerosene as fuel for 20 kW gas turbine engine[J]. International Journal of Engineering Research and Applications, 2012, 2 (6): 1641- 1645
[7]   ZHANG J Z, ZHANG S, WANG C, et al Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics, 2020, 33 (4): 1119- 1136
doi: 10.1016/j.cja.2019.12.023
[8]   YAO J, SU P, HE J, et al Experimental and numerical investigations on double-jet film-cooling with different mainstream incidence angles[J]. Applied Thermal Engineering, 2020, 166: 114737
doi: 10.1016/j.applthermaleng.2019.114737
[9]   ZHOU J, WANG X, LI J, et al Effects of diameter ratio and inclination angle on flow and heat transfer characteristics of sister holes film cooling[J]. International Communications in Heat and Mass Transfer, 2020, 110: 104426
doi: 10.1016/j.icheatmasstransfer.2019.104426
[10]   LIU Y, YU R, LI Y Numerical simulations of a double-wall cooling with internal jet impingement and external hexagonal arrangement of film cooling holes[J]. International Journal of Thermal Sciences, 2020, 153: 106337
doi: 10.1016/j.ijthermalsci.2020.106337
[11]   SCRITTORE J J, THOLE K A, BURD S W Investigation of velocity profiles for effusion cooling of a combustor liner[J]. Journal of Turbomachinery, 2007, 129 (3): 518- 526
doi: 10.1115/1.2720492
[12]   杨成凤. 单排气膜和多孔全覆盖气膜冷却研究[D]. 南京: 南京航空航天大学, 2009.
YANG Cheng-feng. Study on single row and full coverage film cooling [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[13]   ANDREINI A, FACCHINI B, PICCHI A, et al Experimental and theoretical investigation of thermal effectiveness in multiperforated plates for combustor liner effusion cooling[J]. Journal of Turbomachinery, 2014, 136 (9): 091003
doi: 10.1115/1.4026846
[14]   WURM B, SCHULZ A, BAUER H J, et al Impact of swirl flow on the cooling performance of an effusion cooled combustor liner[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134 (12): 121503
doi: 10.1115/1.4007332
[15]   张婧宜. 火焰筒多斜孔壁气膜冷却的数值模拟[D]. 武汉: 华中科技大学, 2015.
ZHANG Jing-yi. Numerical simulation of multi-hole cooling scheme for combustor liner [D]. Wuhan: Huazhong University of Science and Technology, 2015.
[16]   朱林中. 高温合金毫秒激光打孔实验与数值模拟研究[D]. 镇江: 江苏大学, 2017.
ZHU Lin-zhong. Research on experiment and numerical simulation of micro holes drilling on superalloy by millisecond laser [D]. Zhenjiang: Jiangsu University, 2017.
[17]   NGO T D, KASHANI A, IMBALZANO G, et al Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172- 196
doi: 10.1016/j.compositesb.2018.02.012
[18]   AZAROV A, KOLESNIKOV V, KHAZIEV A. Development of equipment for composite 3D printing of structural elements for aerospace applications [C]// IOP Conference Series: Materials Science and Engineering. Moscow: IOP Publishing, 2020: 012049.
[19]   ISO. Sensory analysis methodology: method of investigating sensitivity of taste: ISO 3972: 2011 [S]. Switzerland: ISO, 2011.
[20]   宋波, 林宇震, 刘高恩, 等 不同排列方式多斜孔壁气膜冷却绝热温比研究[J]. 航空动力学报, 1999, 14 (1): 3- 5
SONG Bo, LIN Yu-zhen, LIU Gao-en, et al An investigation on film cooling effectiveness of inclined-mutihole walls with different patterns[J]. Journal of Aerospace Power, 1999, 14 (1): 3- 5
[21]   王磊, 张靖周, 杨卫华, 等 冲击/发散冷却气膜冷却效率的实验研究[J]. 工程热物理学报, 2007, 28: 97- 100
WANG Lei, ZHANG Jing-zhou, YANG Wei-hua, et al Experiment search on film cooling effectiveness of impingement/effusion cooling[J]. Journal of Engineering Thermophysics, 2007, 28: 97- 100
doi: 10.3321/j.issn:0253-231X.2007.z1.025
[22]   BOHAN B T, POLANKA M D A new spin on small-scale combustor geometry[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141 (1): 011504
doi: 10.1115/1.4040658
[23]   PIORO I L, DUFFEY R B. Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications [M]. New York: ASME, 2007.
[24]   CELIK I B, GHIA U, ROACHE P J Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering Transactions of the ASME, 2008, 130 (7): 078001
doi: 10.1115/1.2960953
[25]   SILIETI M, KASSAB A J, DIVO E Film cooling effectiveness: comparison of adiabatic and conjugate heat transfer CFD models[J]. International Journal of Thermal Sciences, 2009, 48 (12): 2237- 2248
doi: 10.1016/j.ijthermalsci.2009.04.007
[26]   OIJEN J A V, GOEY L P H D Modelling of premixed laminar flames using flamelet-generated manifolds[J]. Combustion Science and Technology, 2000, 161 (1): 113- 137
doi: 10.1080/00102200008935814
[27]   徐佳琪, 郭俊江, 刘爱科, 等 RP-3替代燃料自点火燃烧机理构建及动力学模拟[J]. 物理化学学报, 2015, 31 (4): 643- 652
XU Jia-qi, GUO Jun-jiang, LIU Ai-ke, et al Construction of autoignition mechanisms for the combustion of RP-3 surrogate fuel and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2015, 31 (4): 643- 652
doi: 10.3866/PKU.WHXB201503022
[28]   蔡文祥. 环形燃烧室两相燃烧流场与燃烧性能数值研究[D]. 南京: 南京航空航天大学, 2007.
CAI Wen-xiang. Numerical study on flowfield and combustion performance of two-phase combustion in annular combustor [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
[29]   Procedure for the analysis and evaluation of gaseous emissions from aircraft engines: SAE ARP 1533 [S]. Warrendale: SAE, 2016.
[30]   中华人民共和国国家标准. 3号喷气燃料: GB 6537 [S]. 北京: 中国标准出版社, 2018.
[31]   SEN B, SCHMIDT D L, BOGARD D G Film cooling with compound angle holes: heat transfer[J]. Journal of Turbomachinery, 1996, 118 (4): 800- 806
doi: 10.1115/1.2840937
No related articles found!