Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1668-1675    DOI: 10.3785/j.issn.1008-973X.2021.09.008
    
Vertical ground reaction force characteristics of blue sheep based on different slopes walking
Xiang-yu LIU1(),Hai-lin KUI1,Zhi-hui QIAN2,*(),Lei REN2,3
1. College of Transportation, Jilin University, Changchun 130022, China
2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
3. School of Engineering, University of Manchester, Manchester M13 9PL, UK
Download: HTML     PDF(1245KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Blue sheep was selected as the object to test the variation of its limbs vertical ground reaction force by variable slope channel with built-in pressure plate, in order to supply bionic prototype for quadruped robots with excellent climbing performance. Results showed that the peak vertical force and the vertical impulse on the left and right sides of the front and hind limbs were completely symmetrical when the sheep walking on the flat ground. The symmetry index of the front limbs was 99.16% and 99.62% respectively, and the symmetry index of the rear limbs was 98.65% and 99.42% respectively. Along with the increasing of slope angle, the blue sheep adjusted the vertical force distribution to prevent lameness, which caused fluctuations in the symmetry index of the left and right hoof. When walking on flat ground, the forelimbs of blue sheep showed higher vertical force than the rear limbs. With the increasing of slope, the vertical force borne by the rear limbs gradually increased. The difference index on the left and right sides of the blue sheep limb has a similar change pattern on different slopes. The mean difference indexes on the left and right limbs of the blue sheep from 0 to 35 degrees were 1.298, 1.305 7, 1.174 4, 1.223 75, 1.017 5, 0.890 5, 0.777 8 and 0.753 5 respectively.



Key wordsengineering bionics      blue sheep      variable slope      pressure plate      vertical ground reaction force     
Received: 12 September 2020      Published: 20 October 2021
CLC:  Q 811.9  
Fund:  国家自然科学基金资助项目(91848204,91948302,51675222);吉林省科技发展计划资助项目(20180101068JC)
Corresponding Authors: Zhi-hui QIAN     E-mail: liubeixiangyu@163.com;zhqian@jlu.edu.cn
Cite this article:

Xiang-yu LIU,Hai-lin KUI,Zhi-hui QIAN,Lei REN. Vertical ground reaction force characteristics of blue sheep based on different slopes walking. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1668-1675.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.008     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1668


基于多坡度运动的岩羊垂直地反力特征

为了给具有优异攀爬性能的仿生四足机器人提供仿生蓝本,以岩羊为研究对象,利用内嵌压力板的可变坡度斜坡通道,测试其四肢垂直地反力在不同坡度上的变化规律. 结果表明,岩羊在平地上行走时,前后肢左右两侧的垂直地反力峰值和垂直冲量完全对称,前肢对称指数分别为99.16%、99.62%,后肢对称指数分别为98.65%、99.42%. 随着坡度的增加,岩羊调整四肢的垂直地反力分布以防止跛行,导致左右蹄的对称性指数出现波动. 当岩羊在平地行走时,前肢比后肢承受更多的垂直地反力,后肢承受的垂直地反力随着坡度的增加逐渐增多. 岩羊肢体左右侧的差异性指数随坡度的变化具有相似性,当坡度为0~35°时,岩羊肢体左右侧差异性指数的均值分别为1.298、1.305 7、1.174 4、1.223 75、1.017 5、0.890 5、0.777 8、0.753 5.


关键词: 工程仿生学,  岩羊,  可变坡度,  压力板,  垂直地反力 
Fig.1 Experimental blue sheep
Fig.2 Scene photograph of vertical force acquisition experiment
Fig.3 Multiple hoof prints generated by pressure plate
Fig.4 Vertical force - time curve of blue sheep's hooves
α/(°) Fpyq/(N·kg?1) Fpyh/(N·kg?1) Fpzq/(N·kg?1) Fpzh/(N·kg?1)
0 4.75±0.59 3.65±0.14 4.79±0.48 3.70±0.31
5 3.15±0.21 2.39±0.19 2.69±0.14 2.08±0.34
10 2.66±0.33 2.39±0.29 3.04±0.73 2.46±0.63
15 3.72±0.15 3.26±0.26 3.24±0.49 2.48±0.31
20 2.25±0.15 2.62±0.27 3.27±0.29 2.78±0.20
25 2.34±0.25 3.01±0.30 2.34±0.37 2.33±0.26
30 1.81±0.47 2.80±0.50 2.40±0.32 2.64±0.65
35 2.23±0.21 2.83±0.34 2.61±0.13 3.63±0.37
Tab.1 Peak vertical force of blue sheep's hooves
α/(°) Iyq/(N·s·kg?1) Iyh/(N·s·kg?1) Izq/(N·s·kg?1) Izh/(N·s·kg?1)
2.65±0.47 1.71±0.22 2.66±0.33 1.72±0.21
1.53±0.39 1.03±0.14 1.37±0.38 0.86±0.23
10° 1.04±0.30 0.92±0.22 1.13±0.13 0.99±0.12
15° 1.11±0.10 0.96±0.19 1.13±0.15 0.88±0.19
20° 0.81±0.11 1.08±0.18 1.11±0.14 0.97±0.14
25° 0.77±0.17 1.23±0.23 0.79±0.15I 0.87±0.12
30° 0.57±0.19 1.15±0.18 0.73±0.09 1.00±0.14
35° 0.32±0.06 0.73±0.17 0.30±0.05 0.50±0.09
Tab.2 Vertical impulse of blue sheep's hooves
Fig.5 Statistics graph of normalized peak vertical force for sheep's hooves
Fig.6 Statistics graph of normalized vertical impulse for sheep's hooves
α/(°) SFQ/% SFH/% α/(°) SFQ/% SFH/%
0 99.16 98.65 20 68.81 94.24
5 85.39 87.03 25 100 77.41
10 67.76 97.15 30 75.42 94.29
15 87.10 76.07 35 85.44 77.95
Tab.3 Symmetric index of peak vertical force
α/(°) SIQ/% SIH/% α/(°) SIQ/% SIH/%
0 99.62 99.42 20 72.97 89.81
5 89.54 83.50 25 97.47 70.73
10 92.04 92.93 30 78.08 86.96
15 98.23 91.67 35 93.75 68.49
Tab.4 Symmetric index of vertical impulse
Fig.7 Comparison of peak vertical force between left hoof and right hoof
Fig.8 Comparison of vertical impulse between left hoof and right hoof
α/(°) DFY DFZ α/(°) DFY DFZ
0 1.301 4 1.294 6 20 0.858 8 1.176 2
5 1.318 0 1.293 3 25 0.777 4 1.004 2
10 1.113 0 1.235 8 30 0.646 4 0.909 1
15 1.141 1 1.306 4 35 0.788 0.719
Tab.5 Difference index of peak vertical force
α/(°) DIY DIZ α/(°) DIY DIZ
0 1.549 7 1.546 5 20 0.745 2 1.144 3
5 1.485 4 1.743 0 25 0.626 0 0.908 0
10 1.130 4 1.141 4 30 0.495 7 0.73
15 1.156 3 1.284 1 35 0.438 4 0.6
Tab.6 Difference index of vertical impulse
Fig.9 Comparison of peak vertical force between front hoof and rear hoof with different slopes
Fig.10 Comparison of vertical impulse between front hoof and rear hoof with different slopes
Fig.11 Variation rule of difference index with slope
[1]   骆颖. 贺兰山岩羊(Pseudois nayaur)和马鹿(Cervus elaphus alxaicus)的食性及生境选择比较研究[D]. 哈尔滨: 东北林业大学, 2011: 1-9.
LUO Ying. Comparing the diet and habitat selection of sympatric blue sheep (Pseudois nayaur) and red deer (Cervus elaphus alxaicus) in Helan mountaine, China [D]. Harbin: Northeast Forestry University, 2011: 1-9.
[2]   刘喜玲. 贺兰山岩羊步态运动学分析[D]. 哈尔滨: 东北林业大学, 2012: 1-3.
LIU Xi-ling. The kinematics analysis of the blue sheep gait in Helan mountain [D]. Harbin: Northeast Forestry University, 2012: 1-3.
[3]   RAIBERT M, BLANKESPOOR K, NELSON G, et al Bigdog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41 (2): 10822- 10825
doi: 10.3182/20080706-5-KR-1001.01833
[4]   HYUN D J, SEOK S, LEE J, et al High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2014, 33 (11): 417- 1445
[5]   KATZ B, DI C J, KIM S. Mini Cheetah: a platform for pushing the limits of dynamic quadruped control [C]// IEEE International Conference on Robotics and Automation ICRA. New York: IEEE, 2019: 6295-6301.
[6]   BELLICOSO C D, JENELTEN F, FANKHAUSER P, et al. Dynamic locomotion and whole-body control for quadrupedal robots [C]// IEEE International Conference on Intelligent Robots and Systems. New York: IEEE, 2017: 3359-3365.
[7]   钱志辉, 苗怀彬, 商震, 等 基于多种步态的德国牧羊犬足−地接触分析[J]. 吉林大学学报:工学版, 2014, 44 (6): 1692- 1697
QIAN Zhi-hui, MIAO Huai-bin, SHANG Zhen, et al Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (6): 1692- 1697
[8]   田为军, 丛茜, 金敬福 德国牧羊犬的关节角及其地反力[J]. 吉林大学学报: 工学版, 2009, 39 (Suppl. 1): 227- 231
TIAN Wei-jun, CONG Qian, JIN Jing-fu Joint angles and ground reaction forces of German Shepherd dog[J]. Journal of Jilin University:Engineering and Technology Edition, 2009, 39 (Suppl. 1): 227- 231
[9]   STADIG S M, BERGH A K Gait and jump analysis in healthy cats using a pressure mat system[J]. Journal of Feline Medicine and Surgery, 2015, 17 (6): 523- 529
doi: 10.1177/1098612X14551588
[10]   SCHWARZ N, TICHY A, PEHAM C, et al Vertical force distribution in the paws of sound Labrador retrievers during walking[J]. Veterinary Journal, 2017, 221: 16- 22
doi: 10.1016/j.tvjl.2017.01.014
[11]   OOSTERLINCK M, PILLE F, BACK W, et al Use of a stand-alone pressure plate for the objective evaluation of forelimb symmetry in sound ponies at walk and trot[J]. The Veterinary Journal, 2010, 183 (3): 305- 309
doi: 10.1016/j.tvjl.2008.12.012
[12]   OOSTERLINCK M, PILLE F, BACK W, et al A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot[J]. The Veterinary Journal, 2011, 190 (1): 71- 76
doi: 10.1016/j.tvjl.2010.08.016
[13]   MERKENS H W, SCHAMHARDT H C, VAN OSCH, et al Ground reaction force patterns of Dutch Warmblood horses at normal trot[J]. Equine Veterinary Journal, 1993, 25 (2): 134- 137
doi: 10.1111/j.2042-3306.1993.tb02923.x
[14]   RIFKIN R E, GRZESKOWIAK R M, MULON P-Y, et al Use of a pressure-sensing walkway system for biometric assessment of gait characteristics in goats[J]. Plos One, 2019, 14 (10): e0223771
doi: 10.1371/journal.pone.0223771
[15]   KIM J, BREUR G J Temporospatial and kinetic characteristics of sheep walking on a pressure sensing walkway[J]. Canadian Journal of Veterinary Research, 2008, 72 (1): 50- 55
[16]   LEWINSON R T, STEFANYSHYNAB D J A descriptive analysis of the climbing mechanics of a mountain goat (Oreamnos americanus) [J]. Zoology, 2016, 119 (6): 541- 546
doi: 10.1016/j.zool.2016.06.001
[17]   PANDY MG, KUMAR V, BERME N,  et  al The dynamics of quadrupedal locomotion[J]. Journal of Biomechanical Engineering, 1988, 110 (3): 230- 237
doi: 10.1115/1.3108436
[18]   MERKENS H W, SCHAMHARDT H C, HARTMAN W, et al Ground reaction force patterns of Dutch Warmblood horses at normal walk[J]. Equine Veterinary Journal, 1986, 18 (3): 207- 214
doi: 10.1111/j.2042-3306.1986.tb03600.x
[19]   ZHANG F, WANG Y, ZHENG L, et al Biomimetic walking mechanisms: kinematic parameters of goats walking on different slopes[J]. Concurrency and Computation-Practice and Experience, 2018, 30 (24): e4913
doi: 10.1002/cpe.4913
[20]   董永贵, 孙照焱, 贾惠波 振动信号异常值的免疫机制检测算法[J]. 清华大学学报:自然科学版, 2004, 44 (5): 625- 628
DONG Yong-gui, SUN Zhao-yan, JIA Hui-bo Immune mechanism based detection algorithm for abnormal vibration signals[J]. Journal of Tsinghua University: Science and Technology, 2004, 44 (5): 625- 628
No related articles found!