Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2190-2195    DOI: 10.3785/j.issn.1008-973X.2020.11.014
    
Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408)
Yi-bo WANG1,2(),Hui-ming DING3,4,*(),Jin-yang ZHENG1,2,4,Qun-jie LU1,2,Zhen-yu WANG1,2,Ping XU5,Zhi-wei CHEN6
1. Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
2. High-pressure Process Equipment and Safety Engineering Research Center of Ministry of Education, Zhejiang University, Hangzhou 310027, China
3. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
5. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
6. China Special Equipment Inspection and Research Institute, Beijing 100029, China
Download: HTML     PDF(1017KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cryogenic pressure vessel’s low-cycle fatigue performance is greatly affected by cold forming and warm forming. Tensile experiments and low-cycle fatigue experiments of metastable austenitic stainless steel S30408 at liquid-nitrogen temperature (77 K) were conducted to analyze the influences of pre-strain (0 and 0.35) and pre-strain temperature (293 K and 363 K) on the cryogenic low-cycle fatigue performance. Due to 0.35 pre-strain resulting in the increase in dislocation density and formation of strain-induced body centered cubic martensite, 293 K pre-strain specimen shows higher initial cyclic stress amplitude, smaller fatigue striation width and longer low-cycle fatigue life than base metal specimen at 77 K. When the pre-strain temperature changes from 293 K to 363 K, the austenite phase owns higher stability, martensitic transformation is blocked, the initial cyclic stress amplitude decreases, the fatigue striation width increases, and the strengthening effects on the cryogenic low-cycle fatigue life caused by 0.35 pre-strain is weakened. In general, 0.35 pre-strain shows significant strengthening effects on the S30408’s cryogenic low-cycle fatigue performance, and the effects are limited by the pre-strain temperature.



Key wordsliquid-nitrogen temperature      pre-strain temperature      cyclic stress response      low-cycle fatigue life      martensitic transformation     
Received: 09 October 2019      Published: 15 December 2020
CLC:  TG 142  
Corresponding Authors: Hui-ming DING     E-mail: yibowang@zju.edu.cn;ddhhmm558@163.com
Cite this article:

Yi-bo WANG,Hui-ming DING,Jin-yang ZHENG,Qun-jie LU,Zhen-yu WANG,Ping XU,Zhi-wei CHEN. Cryogenic low-cycle fatigue performance of pre-strained metastable austenitic stainless steel (S30408). Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2190-2195.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.014     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2190


预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能

为了研究冷成形和温成形对深冷容器低周疲劳性能的影响,通过液氮温度(77 K)下的拉伸试验和低周疲劳试验,分析预应变(0和0.35)和预应变温度(293 K和363 K)对亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能的影响机制. 0.35预应变使试样内部位错密度增加和产生强化相体心立方马氏体,与母材试样相比,293 K预应变试样初始循环应力幅增大,疲劳辉纹宽度减小,深冷低周疲劳寿命增加显著. 随着预应变温度由293 K升高到363 K,奥氏体相稳定性增加,马氏体相变受到抑制,初始循环应力幅减小,疲劳辉纹宽度增大,预应变对深冷低周疲劳寿命的增益作用减弱. 总体来看,0.35预应变对S30408深冷低周疲劳性能有明显增益作用,但增益程度受预应变温度的限制.


关键词: 液氮温度,  预应变温度,  循环应力响应,  低周疲劳寿命,  马氏体相变 
材料 wB /%
C Si Mn P S Cr Ni Mo N
S30408 0.036 0.390 1.120 0.035 0.005 18.310 8.180 0.091 0.032
GB24511 ≤0.08 ≤0.75 ≤2.00 ≤0.035 ≤0.015 ≤18.00~20.00 ≤8.00~12.00 ? ≤0.10
Tab.1 Chemical compositions of S30408 stainless steel under testing
Fig.1 Pre-strain plate and sampling schematic and Photography of plate after pre-strain
Fig.2 Geometric dimensions of circular bar specimens
Fig.3 Engineering stress-strain curve of S30408 base metal and pre-strain metal at 77 K
试样 Rp0.2 /MPa Rm /MPa ${w_{\alpha '}}$ /%
试验前 试验后
母材 472 1773 0 73.9
293 K预应变 990 1818 16.1 72.2
363 K预应变 723 1829 0 71.4
Tab.2 Tensile property of S30408 base metal and pre-strain metal at 77 K
Fig.4 Cyclic stress response curves of S30408 base metal and pre-strain metal at 77 K
Fig.5 Fatigue life of S30408 base metal and pre-strain metal
试样 E /MPa b c εf σf′ /MPa
母材 173 000 ?0.080 ?0.448 0.0230 1972
293 K预应变 163 404 ?0.058 ?0.349 0.0120 1967
363 K预应变 160 130 ?0.059 ?0.480 0.0095 1758
Tab.3 Manson-Coffin equation fitting parameters of S30408 base metal and pre-strain metal
批次 293 K 368 K
Rm /MPa R0.35 /MPa R Rm /MPa R0.35 /MPa R
W 753 592 0.786 604 555 0.919
X 747 628 0.841 588 555 0.944
Y 802 660 0.823 582 532 0.914
Z 744 624 0.839 558 527 0.944
Tab.4 Stress changing of S30408 during pre-strain process at different temperatures
Fig.6 Fatigue striations of different specimens at stain amplitude of 0.7%
[1]   ZHENG J, MIAO C, LI Y, et al Investigation on influence factors of mechanical properties of austenitic stainless steels for cold stretched pressure vessels[J]. Journal of Pressure Vessel Technology: Transactions of the ASME, 2012, 134 (6): 061407
[2]   JIN L, CHO H, LEE C, et al Experimental research and numerical simulation on cryogenic line chill-down process[J]. Cryogenics, 2018, (89): 42- 52
[3]   DING H, WU Y, LU Q, et al Tensile properties and impact toughness of S30408 stainless steel and its welded joints at cryogenic temperatures[J]. Cryogenics, 2018, (92): 50- 59
[4]   OH D, LEE J, NOH B, et al Investigation of fatigue performance of low temperature alloys for liquefied natural gas storage tanks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229 (7): 1300- 1314
[5]   樊雪珺, 惠虎, 黄淞 应变强化型移动式深冷压力容器在控制形变情况下的应力分析[J]. 压力容器, 2019, 36 (8): 16- 22
FAN Xue-jun, HUI Hu, HUANG Song Stress analysis of strain-strengthened transportable cryogenic pressure vessels with deformation controlled[J]. Pressure Vessel Technology, 2019, 36 (8): 16- 22
[6]   张潇. 亚稳态奥氏体不锈钢标准椭圆形封头温冲压温度研究[D]. 杭州: 浙江大学, 2015: 4-6.
ZHANG Xiao. Research on temperature of warm stamping formed standard elliptical head made of metastable austenitic stainless steel [D]. Hangzhou: Zhejiang University, 2015: 4-6.
[7]   AKITA M, NAKAJIMA M, TOKAJI K, et al. Fatigue behaviour of pre-strained type 316 stainless steel [C]// Fracture of Nano and Engineering Materials and Structures. Dordrecht: Springer, 2006: 229-230.
[8]   姜公锋, 孙亮, 陈钢 304不锈钢应变强化疲劳寿命的试验研究[J]. 机械强度, 2014, 36 (6): 850- 855
JIANG Gong-feng, SUN Liang, CHEN Gang Experimental study of 304 stainless steel fatigue life considering material pre-strain hardening effect[J]. Journal of Mechanical Strength, 2014, 36 (6): 850- 855
[9]   彭开萍, 陈文哲, 钱匡武 动态应变时效对18—8型奥氏体不锈钢低周疲劳行为的影响[J]. 金属学报, 1993, 29 (6): 43- 48
PENG Kai-ping, CHEN Wen-zhe, QIAN Kuang-wu Effect of dynamic strain aging on low cycle fatigue behavior of 18-8 austenitic stainless steel[J]. Acta Metallurgica Sinica, 1993, 29 (6): 43- 48
[10]   YURI T, OGATA T, SAITO M, et al Effect of welding structure and delta-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures[J]. Cryogenics, 2000, 40 (4/5): 251- 259
[11]   MCRAE D M, BALACHANDRAN S, WALSH R P. Fatigue and fracture of three austenitic stainless steels at cryogenic temperatures [J]. IOP Conference Series: Materials Science and Engineering. 2017, 279(1):12001.
[12]   BOTSHEKAN M, DEGALLAIX S, DESPLANQUES Y, et al. Tensile and LCF properties of AISI 316LN SS at 300 K and 77 K [J]. Fatigue and Fracture of Engineering Materials & Structures, 1998, 21(6): 651-660.
[13]   WU Y, XU H, LU Q, et al. Low-cycled fatigue life of S30408 stainless steel at liquid-nitrogen temperature [C]// ASME 2018 Pressue Vessels and Piping Conference. Pragure: ASME, 2018.
[14]   承压设备用不锈钢板及钢带: GB/T 24511—2017[S]. 北京: 中国标准出版社, 2018.
[15]   LU Q, ZHENG J, ZHANG X. Research on forming temperature of metastable austenitic stainless steel head based on stain-induced martensitic transformation [C]// ASME 2016 Pressure Vessels and Piping Conference. Vancouver: ASME, 2016.
[16]   金属材料 低温拉伸试验方法: GB/T 13239—2006[S]. 北京: 中国标准出版社, 2007.
[17]   金属材料轴向等幅低循环疲劳试验方法: GB/T 15248—2008[S]. 北京: 中国标准出版社, 2008.
[18]   Method of low cycle fatigue testing for metallic materials in liquid helium: JIS Z2283 [S]. Tokyo: Publishing Information Department of Japanese Standards Association, 1998.
[19]   TALONEN J, ASPEGREN P, HANNINEN H Comparison of different methods for measuring strain induced α '-martensite content in austenitic steels[J]. Materials Science and Technology, 2004, 20 (12): 1506- 1512
[20]   SPENCER K, EMBURY J D, CONLON K T, et al Strengthening via the formation of strain-induced martensite in stainless steels[J]. Materials Science and Engineering A, 2004, 387: 873- 881
[21]   吴志强, 唐正友, 李华英, 等 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48 (5): 593- 600
WU Zhi-qiang, TANG Zheng-you, LI Hua-ying, et al Effect of strain rate on microstructure evolution and mechanical behavior of a low C high TRIP/TWIP steels[J]. Acta Metallurgica Sinica, 2012, 48 (5): 593- 600
[22]   BEHJATI P, NAJAFIZADEH A, KENMANPUR A Microstructural investigation on strengthening mechanisms of AISI 304L austenitic stainless steel during cryogenic deformation[J]. Materials Science and Technology, 2011, 27 (12): 1828- 1832
[23]   DE A K, SPEER J G, MATLOCK D K, et al Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37 (6): 1875- 1886
[24]   SHIN H C, HA T K, CHANG Y W Kinetics of deformation induced martensitic transformation in a 304 stainless steel[J]. Scripta Materialia, 2001, 45 (7): 823- 829
[25]   张亚军, 魏建勋 800 MPa级低合金高强度钢的循环软硬化特性[J]. 材料开发与应用, 2009, 24 (5): 12- 16
ZHANG Ya-jun, WEI Jian-xun Cyclic softening/hardening characteristics of a high-strength low-alloy 800 MPa grade steel[J]. Development and Application of Materials, 2009, 24 (5): 12- 16
doi: 10.3969/j.issn.1003-1545.2009.05.003
[26]   DING H, WU Y, LU Q, et al A modified stress-strain relation for austenitic stainless steels at cryogenic temperatures[J]. Cryogenics, 2019, 101: 89- 100
[27]   张庆友. 喷射成形2195铝锂合金微观组织演变及低周疲劳行为研究[D]. 济南: 山东大学, 2019: 39-40.
ZHANG Qing-you. Research on spray-formed 2195 aluminium-lithium alloy microstructure evolution and low-cycle fatigue behavior [D]. Jinan: Shandong University, 2019: 39-40.
[1] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[2] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.